
1

DESIGN AND FABRICATION OF AN
AUTONOMOUS

SEARCH AND RESCUE ROBOT

Seven Nation Army: Rocky
MAE 322: Mechanical Design

Due Date: May 13, 2014

Course Project by

FIYINFOLUWA AKINLAWON
DAVID BECK

ANNIE CARDINAL
ALEX CREELY
DAVID HARRIS

ERIC MATERNIAK
VICTOR PRATO

2014

PRINCETON UNIVERSITY

2

Contents

1 Executive Summary . 7
2 Introduction . 8
2.1 Objectives of the Design . 8

2.1.1 Retrieving the Medical Kit . 8
2.1.2 Navigating the Obstacle Course . 8
2.1.3 Breaching the Wall . 9
2.1.4 Navigating the Chute . 9
2.1.5 Delivering the Medical Kit . 10

2.2 Preliminary Research . 11
2.3 Design Concept . 12
3 Detailed Design and Analysis . 14
3.1 Design Process . 14
3.2 Electric DC Motors . 14
3.3 Power Requirements and Power Regulation 15
3.4 Electronics Layout . 16
3.5 Infrared Proximity Sensors . 17
3.6 Photoresistive Light Sensors . 18
3.7 Wheels and Tires . 18
3.8 Arm and Claw . 19
3.9 Static and Dynamic Analysis and Design Loads 21
3.10 Control Systems . 23

3.10.1 Sensor Placement . 23
3.10.2 Code Structure Overview and Design Process 26
3.10.3 RC Mode . 27
3.10.4 Autonomous Mode . 27

4 Specifications . 29
4.1 Drive Train Specifications . 29
4.2 Arm Specifications . 30
4.3 Power Specifications . 31
4.4 Operational and Navigational Modes . 31

4.4.1 RC/Manual Mode . 31
4.4.2 Autonomous Mode . 32

5 Testing Methods and Results . 32
5.1 Testing Methods . 32
5.2 Testing Results . 33

5.2.1 RC Retrieval of Med Kit . 33
5.2.2 Wall Traversal . 33
5.2.3 Chute Navigation . 33
5.2.4 Light Sensing . 33
5.2.5 Dropping O↵ Med Kit . 33

6 Conclusions and Future Work . 34
A Milestones . 36
B Budget . 36

3

C Timecard . 37
D Material List . 38
E Chain Pitch . 39
F IR Sensor Data . 40
G Derivation Specifications . 40
G.1 Drive Train Specifications . 40

G.1.1 Delivery Time . 40
G.1.2 Gear Ratio . 40
G.1.3 Wheel Torque . 41
G.1.4 Maximum Velocity . 41
G.1.5 Lifting Torque . 41
G.1.6 Pull Torque . 41

G.2 Derivation of Arm Parameters . 42
G.2.1 Arm Torque . 42
G.2.2 Drop Time . 42
G.2.3 Raise Time . 42

H Code . 42
I Acknowledgements . 52
J Honor Code Pledge . 53

4

List of Figures

1 Schematic of the Medical Kit and Receptacle [NOTE: not to scale]. The med
kit is a 4” cubic box, with a 3” cylindrical handle with a 1” diameter and a
1.5” topper. This creates a design constraint for the passive gripper that it
must be x wide, where 1” < x < 1.5”. The front view of target receptacle
shown, with the light source beneath the open basket. The med kit is to be
delivered to the receptacle. 8

2 Schematic of the Wall [NOTE: not to scale]. The front view shows the wall
with two 6” steps and a bar 48” above the base. The side view shows the
lower step with a width of 6” and the other step with a width of 1”. The
horizontal bar is 1” in diameter . 9

3 Schematic of the Chute [NOTE: not to scale]. Chute is 15’ long and 3’ wide,
with two 30o bends. 10

4 Schematic of the Course [NOTE: not to scale]. The figure shows the entire
course from start to finish, showing the relative positions of the various ob-
stacles in the course and the approximate length of each challenge and obstacle. 10

5 Amoeba robot . 11
6 A robot used in the search and rescue e↵ors of 9/11 12
7 Schematic of the Complete SaRR . 13
8 Graph shows DC motor performance curves. The black curve is current

against torque, the red is e�ciency against torque, green is power against
torque and blue is speed against torque. 15

9 Online calculator used to determine power requirements. The results are in
the bottom box. 16

10 Detailed wiring diagram showing the relative position and wiring of di↵erent
components on the electronics layer. There are 5 motor controllers, 4 drill
motors, 1 geared down motor and four battery packs. In addition to the
connection blocks and arduino. 17

11 The graphs show sensor reading vs. distance (in inches) from the sensor. The
three sensors have the same generic curve which is expected as they are all
Sharp sensors of similar models. 18

12 (a) shows the first front wheel design iteration, (b) shows the final design. . . 19
13 Creo rendering of arm and claw assembly . 20
14 Schematic of Gripper and Arm . 21
15 Free Body Diagram of Lifting Torque [NOTE: not to scale]. Shows how much

force will be required from the front motors to lift the robot. 21
16 Free Body Diagram of Drive Torque [NOTE: not to scale]. Shows the drive

torque required of the rear motor prior to gearing. 22
17 Free Body Diagram of Chain Analysis [NOTE: not to scale]. Shows the max-

imum torque required of the front wheels at the top of the wall. 22
18 (a) shows the position of the center of mass with the original configuration

of the motor mounts, the robot could not make it over the wall. Moving the
motor mounts forward, the center of mass moves beyond the wall as seen in
(b), which forces the robot over the wall. 23

5

19 Diagram of sensor placement. CProx is center proximity sensor, LProx is left
proximity sensor, RProx is right proximity sensor, BProx is back proximity
sensor. 24

20 Block diagram of Teensyduino inputs and outputs. 25
21 Outline of control algorithm for open-loop. 25
22 Outline of control algorithm for closed-loop. 26
23 (a) shows the front wheel orientation of Rocky when it is not ready to drive.

(b) shows the orientation when it is ready to drive. 29

6

List of Tables

1 Drive Train Specifications . 30
2 Arm Specifications . 31
3 Power Specifications . 31
4 Milestones . 36
5 Budget . 36
6 Timecard with total time of 958.5hrs . 37
7 Pricing of Mechanical Parts . 38
8 Pricing of Electrical Parts . 38
9 Chain Pitch . 39
10 IR Sensor Data . 40

1 Executive Summary 7

1 Executive Summary

Imagine this: A devastating earthquake hits, and dozens of people are injured and trapped
inside buildings. It is too dangerous for rescue personnel to enter, and time is running out
for the people inside. They need medicine, and fast. Enter Rocky, the Search and Rescue
Robot (SaRR). With Rocky’s ability to carry a medical kit, traverse rubble and obstacles,
and autonomously deliver the kit to the target, the lives of the trapped victims can be saved.

Our SaRR, Rocky, is a 45 pound robot with a 20” by 10” chassis that is able to deliver
medicine to a victim in approximately two minutes. It is capable of retrieving a medical kit,
navigating an obstacle course, and autonomously traversing two 6 inch steps followed by a
foot-high drop and navigating through a chute without hitting the walls. It then detects a
flashlight, mimicking a light beacon waved by an injured person, and autonomously delivers
the medical kit to the victim.

Rocky is designed to be robust and simple. The drivetrain is used for both general travel
and wall traversal, and the arm requires only one motor as the result of a passive claw. The
first highlight of Rocky’s design is the tri-lobe front wheels, which operate in sync with each
other and are passive until they are used to climb the wall. While driving, only one of the
tri-lobes is in contact with the ground because it ensures better weight distribution over the
back wheels.

The second highlight is Rocky’s passive claw, which reduces the number of necessary
motors and makes Rocky simple and robust. Two prongs hook under the handle of the
medical kit and lift it up into a safe storage position.

The rear wheels are bicycle-style, providing traction and steering control on the floor and
a boost to climb over the wall. A low gear ratio provides control of maneuverability. When
traversing the wall, the robot’s center of gravity is just past the top of the wall, causing it
to slide over instead of breaching. Two metal antenna projections on the front of the robot
safely prevent the robot from tipping over when descending the 12” drop.

In order to navigate the chute and detect the light autonomously, two light sensors and
four proximity sensors were chosen to allow accurate autonomous navigation.

Rocky is a simple and robust SaRR and is reliable at completing the task at hand.

2 Introduction 8

2 Introduction

2.1 Objectives of the Design

Rocky’s objective is to retrieve a medical kit and deliver it to a basket at the end of an obstacle
course. This basket models a person, trapped under rubble and in need of assistance, holding
a flashlight. In an attempt to achieve this goal, the robot has to first retrieve the medical
kit, navigate an obstacle course, traverse a wall barrier, navigate through a chute, and then
deliver the medical kit. For each of the sub tasks within the main objective, the robot must
adhere to certain criteria, which will be elaborated upon below:

2.1.1 Retrieving the Medical Kit

The robot starts in a designated area and will be manually driven for about 10ft. before
the med kit can be manually retrieved. The med kit is modeled as a 2.5lb 4” cube with
a 4” handle shown in Figure 1, and starts in a fixed position on the floor. The retrieval
mechanism must be able to ensure security of the kit through the rest of the course.

Fig. 1: Schematic of the Medical Kit and Receptacle [NOTE: not to scale]. The med kit is
a 4” cubic box, with a 3” cylindrical handle with a 1” diameter and a 1.5” topper.
This creates a design constraint for the passive gripper that it must be x wide, where
1” < x < 1.5”. The front view of target receptacle shown, with the light source
beneath the open basket. The med kit is to be delivered to the receptacle.

2.1.2 Navigating the Obstacle Course

After retrieving the med kit, the robot must manually navigate an obstacle course that ends
in a demarcated area. The obstacle course Rocky will travel through involves turns and
curves marked out by cones. In addition to the cones, there is a fair amount of debris along
the course through which the robot should navigate smoothly in an attempt to display its
agility and maneuverability. A schematic of the course is shown in Figure 4.

2 Introduction 9

2.1.3 Breaching the Wall

On arriving at the area prior to the wall, the robot must be in autonomous mode and must
autonomously traverse the wall and arrive on the other side with all parts and the med kit
intact. The wall has two wooden steps each 6” high, the first step is 6” wide and the second
step is 1” wide. In addition, the wall has a metal bar fixed 36” above the second step that
may also be used for traversing if necessary. Figure 2 shows the wall in more detail.

Fig. 2: Schematic of the Wall [NOTE: not to scale]. The front view shows the wall with
two 6” steps and a bar 48” above the base. The side view shows the lower step with
a width of 6” and the other step with a width of 1”. The horizontal bar is 1” in
diameter

2.1.4 Navigating the Chute

As the robot descends the wall it must autonomously navigate through the chute. The
chute shown in Figure 3 is a 15’ long, 3’ wide pathway created using unpainted 12” high, 3

4”
thick plywood. This autonomous navigation of the robot should involve the use of proximity
sensors to allow navigation through the chute.

2 Introduction 10

Fig. 3: Schematic of the Chute [NOTE: not to scale]. Chute is 15’ long and 3’ wide, with
two 30o bends.

2.1.5 Delivering the Medical Kit

The robot autonomously delivers the med kit to a basket attached to a light source (Figure
1). After navigating the chute, the robot must autonomously find the light source and
navigate to the source. On arrival, the robot must deliver the med kit to the basket. The
distance from the end of the chute to the light source is about 20’. A schematic of the entire
course can be seen in Figure 4.

Fig. 4: Schematic of the Course [NOTE: not to scale]. The figure shows the entire course
from start to finish, showing the relative positions of the various obstacles in the
course and the approximate length of each challenge and obstacle.

2 Introduction 11

2.2 Preliminary Research

Search and Rescue Robots must be robust in function and ability in order to respond e↵ec-
tively in a variety of situations. In an attempt to encourage such robustness, the Intelligent
Systems Division of the National Institute of Standards and Technology (NIST) set criteria
for urban search and rescue robots to achieve. They are:[4]

• Mobility: They must be able to traverse an array of uneven surfaces with drops and
steps and sharp turns and take advantage of unconventional routes.

• Sensing: They must be able to sense the change in environmental factors like light
and surface geometry. In addition it should be able to sense the presence of victims
manifested in multiple ways including: acoustic, thermal and visual.

• Knowledge Representation: It should be able to build up a map of the site as it traverses
it and using knowledge determine victim and hazard locations and potential quick exit
routes.

• Planning: Should be able to plan the optimal route for exploring the given area, taking
into account the time-critical nature of the work and the maximizing the number of
victims rescued.

• Autonomy: Should be able to operate autonomously, as the radio controllers may be
out of reach. In such a scenario, the robots must be able to continually update their
plans and objectives.

• Collaboration: In the scenario where there are multiple robots exploring a similar site
(which is usually the case), the robots should be able to talk to each other to optimize
travel and reduce redundancy.

These rigorous criteria were set for a course pre designed by the NIST, but can be applicable
to just about any ground search and rescue robot.

Fig. 5: Amoeba robot

Using these criteria as a benchmark, a
standard has been set for the e�cacy of
search and rescue robots. This has led to
an array of concepts put forward in theory
and in practice. Drawing inspiration from
nature, a group of Japanese engineers devel-
oped a snake-like rescue robot, built by con-
necting multiple crawler vehicles in series. It
has the main advantages of climbing over ob-
stacles, moving through narrow spaces and
adapting to irregular surfaces. [5]The con-
cepts behind this promising robot lie true to
the fundamentals of the search and rescue
robots. However, more work has been pro-
posed on the design, actuation and control
of these robots in order to make them truly

2 Introduction 12

deployable.[6] In addition to the snake robot,
other nature inspired crawler robots are in the design phase including: lizard-type robots
that adhere to walls [6] and amoeba-like robots (Figure 5) that use their entire outer skin
as a means of propulsion.[7] It posses the advantage of being able to squeeze into areas that
many other robots could not, but still maintain the integrity of its functions. Dennis Hong,
the researcher in charge of the project expresses that the robot is like a 3-D tank tread [7],
alluding to the idea that tank treads are preferable for search and rescue robotic purposes.

Fig. 6: A robot used in the search and rescue
e↵ors of 9/11

Hong’s tank tread assertion for a con-
ceptual design is supported by robots that
have been actually used in disasters. Nat-
ural and man-made disasters have been the
major propellers for search and rescue robot
advancement, but they have not been the
only platform. International competitions
aid in that regard as well.[5] An array of
ground robots have been used in disasters
and they support the use of tank treads
and multiple actuators for gripper, arm
and body mobility.[6] Although these robots
were mostly successful in their missions in-
cluding: the World Trade Center (Figure 6),
La Conchita Mudslide and the Sago Mine

Disaster, there are design lessons to be learned: [6]

• Robots should have a safety rope or if wireless should have strong enough communi-
cations to ensure constant contact.

• Robots should be invertible in order to aid mobility and agility

• Robots should have enough water proofing to increase the range of applications

• Imaging is generally desirable

• Autonomic functions in the robot are desirable

2.3 Design Concept

By understanding the objectives of the test course, using the criteria set by the NIST,
drawing inspiration from conceptual design robots and learning from the search and rescue
robots that have been used in practice, an iterative design process for Rocky began.

Traversing the wall is arguably the most significant challenge in the course and was the
focal point of the design. In order to maintain the focus on simplicity and to minimize the
number of moving parts, any design involving the use of the overhead bar on the wall was
ruled out, mainly because it would involve a mechanism di↵erent from the drivetrains which
creates more avenues for potential failure. Therefore the design shifted focus to using the
drive train to get over the wall (Figure 2).

2 Introduction 13

Tank treads seemed to be a good choice for the drivetrain because they provide great
traction and maneuverability that make them especially agile. This is why they are popular
in industrial search and rescue robots as explained earlier. However, the use of tank treads
was rapidly ruled out because the treads are expensive [8]and would have stretched our $500
budget thin. In addition the tank treads fell against the primary goal of simplicity and
minimizing the number of moving parts, and would have been di�cult to implement.

Tires were chosen as an alternative to tank treads for the drive train. Tires are conven-
tionally used for driven robots outside and within the search and rescue field, so they made
a good fit for the robot given the objectives it has to perform. However a decision had to
be made on what size of tires to use on the robots. To get over the 6” step, a wheel with a
radius > 6” was required, therefore a 14” wheel was chosen.

In an attempt to ensure wall traversal capabilities, step-climbing mechanisms were con-
sidered for the front wheels. Inspiration was drawn from stair-climbing robots [9] and in-
corporated into the design for the drivetrain. By so doing, Rocky is design to traverse the
wall by climbing over it with its front wheel and driving over it with its back wheels. While
driving around the course, Rocky will be rear wheel driven to ensure better manuerability
and proximity sensing, however when getting over the wall, the tri-lobe step climbing front
wheels will move in sync to climb over the wall.

The other main component of the course is picking up and delivering the med kit. As
explained earlier, actuated grippers and arms are the norm for search and rescue robots
because they guarantee security of the package. However, in an attempt to stay true to a
design philosophy of simplicity, a passive gripper with and motorized arm was designed as
the piece to pick and deliver the med kit. The kit slides into the crevice of the gripper as the
robot drives forward, and rests on the arm as the kit is lifted onto the chassis of the robot.
The arm then rests on the robot’s chassis (Figure 14).

Fig. 7: Schematic of the Complete SaRR

3 Detailed Design and Analysis 14

3 Detailed Design and Analysis

3.1 Design Process

In order to determine the dimensions for the chassis, we did several experiments using foam
board to model the chassis and wheels climbing over the wall. From these experiments, we
determined that a chassis length of 20” would be ideal. This length was chosen so the two
sets of wheels would not overlap, and that the center of mass of the robot would be far
enough forward to ease the descent of the robot from the top of the wall. The 10” width of
the chassis was determined based on the amount of space needed to store the four batteries
and motor control system.

To prevent Rocky from flipping upside down when it descends the 12” drop on the back
side of the wall, two antennas were added to the robot. These antenna were made from steel,
and were set at a ⇡ 24o angle with respect to the chassis. The two antenna are set to a
length of 22”. Their purpose is to make the robot slide forward and prevent the robot from
flipping when it is in a nearly vertical position with the rear tires still on top of the wall.

3.2 Electric DC Motors

The actuator of choice for this robot were brushed permanent magnet DC motors. They
are simple, cheap, and su�ciently robust for the task objectives. The robot was designed
based on the specs of the motors that were freely provided because purchasing more would
be prohibitively expensive. Therefore, Rocky is equipped with four Low Voltage Johnson
DC Motors (Model HC613LM) to actuate each wheel and 1 Molon Permanent DC magnet
gearmotor to actuate the arm. Each Johnson motor weighs about 0.8 lbs while the Molon
motor weighs approximately 1 lb. The Johnson Motors were procured from LDX112PK
Black & Decker Drills with the gearbox and clutch still attached. The Molon gearmotor was
a pre-existing item in the shop. The Johnson Motor was shown to be have a stall torque of
0.8 lb-ft via a testing station in the shop. The Molon gearmotor is rated with a stall torque
of 40 in-lb.

Both motors required a 12 V power supply which was satisfied by four 12 Volt Lithium
ion batteries procured from the same LDX112PK Drills as the Johnson motors. The current
levels for the motors were not known, and documentation on the specific model was not
available. However, information for a similar Johnson Model (HC613G) was obtained that
indicated a Stall Current of 88 Amps and a No Load Current of 3.40 Amps. There were
multiple instances where a chain issue caused a stall current that overloaded the 20 Amp
rated fuses in our circuit. The Molon Motor had a continuous current rating of 0.68 Amps.
From these values the Peak and Average Power Ratings were calculated for use in analyzing
power requirements. The motor temperature was not a concern since their operational
timeframe is relatively low.

3 Detailed Design and Analysis 15

Fig. 8: Graph shows DC motor performance curves. The black curve is current against
torque, the red is e�ciency against torque, green is power against torque and blue is
speed against torque.

Based on the constraints of the motors provided we designed the robot accordingly. The
design constraint was that we had to ensure that the front wheels had enough lifting torque
to traverse the wall obstacle. Therefore we designed a chain drive that increased the torque
of the motors well above the required value for wall traversal, allowing for 25% losses before
the stall torque was reached.

The gearboxes of these motors were not analyzed as the stall torque was the main pa-
rameter we needed.

The motors are controlled by the Arduino Servos library by writing the pulsewidth desired
to the motors, the range is 1000 to 2000 with 1515 being the stall pulsewidth.

3.3 Power Requirements and Power Regulation

An analysis was done to determine the battery life based on the respective power draws of
each major electrical component. The components included were the two di↵erent motor
controllers, Sharp Sensors, Photo sensors, Johnson Motors, Molon Motor, and RAMB T3
Microcontroller. The fact that the RAMB T3 Microcontroller is in reality powered sepa-
rately by six NiMH batteries was ignored to produce a worst case scenario. The peak or
instantaneous power spikes were not provided in documentation for the Victor 884 series, the
sensors, or the Molon gearmotor. The batteries were modeled as 4 packs wired in parallel
with each supplying a current of 1750 mAh. An online calculator (Figure 9) was used to pro-
duce the results, and necessary parameters were divided into motor requirements, electronics
requirements, and battery setup.

3 Detailed Design and Analysis 16

Fig. 9: Online calculator used to determine power requirements. The results are in the
bottom box.

The overall power consumption of these components is on average 3.8 kW and at peak
times at least 10.2 kW. Based on the robot’s time of operation, the average power consump-
tion is at a rate of 346.68 kWhr.

3.4 Electronics Layout

Rocky’s electrical components are neatly laid out on a laser-cut piece of acrylic with holes
for wires and screws. This keeps everything organized and safely attached. In addition, all
key electrical components and acrylic sheet were damped with rubber tubing to add extra
support and cushioning.

3 Detailed Design and Analysis 17

Fig. 10: Detailed wiring diagram showing the relative position and wiring of di↵erent com-
ponents on the electronics layer. There are 5 motor controllers, 4 drill motors, 1
geared down motor and four battery packs. In addition to the connection blocks
and arduino.

3.5 Infrared Proximity Sensors

Rocky uses four proximity sensors, made by Sharp, for autonomous navigation and operation.
The sensors use infrared technology to obtain a measurement ranging from 0 to 1023, and
these measurements correspond to various distances, as shown in the test plots below. The
relationship is not linear, and results smaller than 3 inches should be discarded. From 0 to
3 inches, there is a sharp linear increase up until about 900, and after 3 inches, the points
follow a gentle curve for about two feet. A higher value corresponds to a small distance. As
the plots below convey, the sensors are fairly consistent with each other and follow nearly
the same contour.

3 Detailed Design and Analysis 18

Fig. 11: The graphs show sensor reading vs. distance (in inches) from the sensor. The three
sensors have the same generic curve which is expected as they are all Sharp sensors
of similar models.

3.6 Photoresistive Light Sensors

Rocky uses two photoresistors to gather data about light. Photoresistors change in resistance
depending on the amount of light exposure. A large amount of light results in a low readout
value, and a small amount of light results in a high readout value. The two sensors are used
to guide Rocky toward the light on the receptacle at the end of the course. By pivoting,
Rocky compares the values of the two sensors and determines whether to turn left or right
with the goal of matching the light sensor values. If the left sensor returns a smaller value
than the right sensor, then Rocky turns toward the left, as the robot is pointed toward the
right. If both sensors are su�ciently bright and within a threshold of each other, then Rocky
drives forward toward the light.

3.7 Wheels and Tires

When designing the wheels, getting the robot over the wall was the first and most important
objective. In order to provide enough force to drive over the wall, the wheels needed to have
a greater radius than the 6” height of the step. We chose 14” diameter rear wheels so they
could provide a force great enough to help push the vehicle over the wall. After observing
the limited traction on the smooth linoleum floor, therabands were wrapped around the rear
wheels to increase traction.

The front wheels are the primary mechanism of climbing over the wall. Our research
showed that tri-lobe wheels were good for step climbing. Originally, the tri-lobe wheels had
a seven inch lobe radius in order to be uniform with the rear wheels. Looking at the geometry
of how the wheels turned as the robot went over each step led us to make one of the lobes
shorter than the other two. This would allow the groove between the circular section and
lobe to fit snugly against the top of the step. This design is shown in Figure 12a.

After testing this design, it was determined that the lobe length needed to be much longer
in order to push our robot over the wall, and that three symmetric lobes would perform better

3 Detailed Design and Analysis 19

(a)

(b)

Fig. 12: (a) shows the first front wheel design iteration, (b) shows the final design.

than the one shorter lobe. The final tri-lobe wheel design has lobes of 7.75 inch radius. This
allows the center of mass of the robot to be far enough forward to tip the robot over the
wall. This final tri-lobe wheels design is shown in Figure 12.

In order to ensure that the tri-lobe wheels could support the entire weight of the robot,
we decided to use half-inch thick HDPE for the material. This thickness was chosen so
that one lobe on each wheel could support Rocky’s weight, which would only be necessary
immediately after Rocky traverses the wall. From stress analyses in Creo, the tri-lobe wheels
could support a static load of 25lbf on each wheel with a safety factor of between two and
three.

3.8 Arm and Claw

We had to design an arm to retrieve the med kit from the driving surface, safely and securely
store the med kit on the robot through the obstacle course, and then deposit the med kit
accurately in the light receptacle. We looked at di↵erent ways to make an arm and a claw
to pick up and drop o↵ the med kit. We decided that for the arm, minimal moving parts
and maximum simplicity of design were key for this component.

We considered having an arm with a joint, or having a claw that would open and close
on one half of the claw and be static on the other half, but eventually we decided that it
would be much simpler and more foolproof if we had only one motor, which would actuate
the arm, and a static claw design that would simultaneously pick up the med kit and store
it when the arm was moved to an upright position.

We decided on a 1” square aluminum tube and 1
8” aluminum sheet for the static claw.

We used a geared down motor from the scrap supply and an aluminum rod and shaft collars
were used to attach the motor to the arm. In order to pin the arm to the collar we made a
HDPE plug for the end of the arm and drilled through the arm for the motor shaft. Then
perpendicular to that we drilled a hole through the arm, the plastic plug and the motor shaft
and put a spring pin in to constrain the unit.

3 Detailed Design and Analysis 20

Fig. 13: Creo rendering of arm and claw assembly

There were multiple ways we could have bent the metal sheet to create the basic shape
we wanted but in the end we went with cutting two mirrored parts and bolting them on
either side of the arm, just bending the bottom of the claw so that it would flare outward for
retrieval of the med kit. The final design can be seen in Figure 13. With the robot mostly
assembled, we used the med kit and the basket we were supposed to deposit it into in order
to choose final geometry. This worked well for us, because the geometry of the arm was
dependant on the height and attitude of the chassis, the medkit and the basket, and nothing
else, so there wasnt much that could change after we designed the arm.

We chose 12 inches for the arm, with the motor attached a half inch into the bottom of
the arm and the claw attached a half inch in from the top. The claw was cut based o↵ of
the height of the med kit from the ground and the width of the medkit.

A huge advantage of our design is that during storage the medkit is solidly held in place,
because we used eighth inch aluminum sheet and made it about a half inch wide. We were
considering adding a cradle on the arm to receive the med kit and hold it in place during wall
traversal, but it turns out that the claw and the design already in place holds the medkit
securely.

3 Detailed Design and Analysis 21

Fig. 14: Schematic of Gripper and Arm

3.9 Static and Dynamic Analysis and Design Loads

Fig. 15: Free Body Diagram of Lifting Torque [NOTE: not to scale]. Shows how much force
will be required from the front motors to lift the robot.

3 Detailed Design and Analysis 22

Fig. 16: Free Body Diagram of Drive Torque [NOTE: not to scale]. Shows the drive torque
required of the rear motor prior to gearing.

Fig. 17: Free Body Diagram of Chain Analysis [NOTE: not to scale]. Shows the maximum
torque required of the front wheels at the top of the wall.

Each of our four wheels will has an associated drill motor. The front wheels are pinned
to the axle, so the axles spins as well. The drill motors we have available to use output
approximately 0.8 ft-lb of torque. In order to climb the wall, a torque of 9.25 ft-lb is
required at the point of tipping. This requires a gear ratio of 11.56:1. Using two sets of gears
in order to achieve this ratio. A small gear will be attached to the drill motor and a gear
5 times larger will be connected to it with a chain. This large gear will sit on an axle with
another small gear the same size as the gear connected to the drill motor. This gear will be
connected to a gear 4 times the size of the smaller gear via another chain. The second large
gear will be connected to the axle of the wheel. In total, this will provide a 20:1 gear ratio,

3 Detailed Design and Analysis 23

(a) (b)

Fig. 18: (a) shows the position of the center of mass with the original configuration of the
motor mounts, the robot could not make it over the wall. Moving the motor mounts
forward, the center of mass moves beyond the wall as seen in (b), which forces the
robot over the wall.

which will supply a torque of 16 ft-lb. This is much greater than the minimum required to
traverse the wall, and su�ciently allows for 25% losses from the motor to the wheel.

In order to allow for the necessary torque to climb the wall, we chose chains as opposed
to belts to connect our gears. This decision was made based on a torque test that we did in
lab. When attaching a metal bar to the wheel of the test robot, the drill motor with a 7.2:1
gear ratio only output about 2.5 ft-lb of torque before the belt began to skip. Chains will
keep tension on the gears at all times and ensure that a su�cient torque can be supplied to
the wheels. Further chain analysis is shown in the appendix.

3.10 Control Systems

3.10.1 Sensor Placement

The front and rear proximity sensors were placed centrally so as to provide the best average
distance between the front or rear of the robot and whatever is sensed. It was initially
decided to place the side sensors on the front of the robot so as to detect the position of
the front of the robot, which is most relevant for navigating the chute. However, geometric
constraints precluded this option. The sensors could not be placed too far forward, or else
they would hit the wall during the wall traversal. This constraint prevented su�cient angling
to detect the side walls if the sensors were placed at the front. For this reason, both sensors
were placed on the sides of the robot, but angled forward so as to better approximate the
position of the front of the robot, which would be what is turning during pivots.

The light sensors were both placed at the front of the robot which would be closest to
the light during the medical kit delivery. As described below, the di↵erence between the
signals from the two sensors is used to determine the position of the light. For this reason

3 Detailed Design and Analysis 24

the two sensors have a slight spatial o↵set and are also o↵set in angle. They were initially
both pointed outward, in order to detect light from both sides, but this caused the robot to
lose sight of the light when it was too close to the drop location. Therefore, the two sensors
were switched to angle inward, so that the robot can sense the light even when very close.
The signals from the two sensors were then corrected for the angle change, such that the
signal from the left sensor reads the right light input and vice versa.

Fig. 19: Diagram of sensor placement. CProx is center proximity sensor, LProx is left prox-
imity sensor, RProx is right proximity sensor, BProx is back proximity sensor.

3 Detailed Design and Analysis 25

Fig. 20: Block diagram of Teensyduino inputs and outputs.

Fig. 21: Outline of control algorithm for open-loop.

3 Detailed Design and Analysis 26

Fig. 22: Outline of control algorithm for closed-loop.

3.10.2 Code Structure Overview and Design Process

The overall structure of our code consists of a series of else if statements that call inter-
nal functions for the autonomous methods. This facilitates debugging, as each method can
be tested separately, and makes the final combination of the autonomous methods simpler.
Starting with the final method of finding the light and stopping the robot, the if state-
ments work backwards and end with wall traversal. The following code is the bulk of our
Autonomous loop, aside from a data-collecting function and a time delay.

3 Detailed Design and Analysis 27

i f (s topbot) {
Halt () ;
HaltTri () ;

} e l s e i f (L ightSense) {
LightSens ing () ;

} e l s e i f (d r ive ready) {
ChuteNav () ;

} e l s e i f (OverWall) {
DriveReady () ;

} e l s e i f (! OverWall) {
Wall () ;

}
When writing the code, we began with overall pseduocode of the autonomous process.

This ensured that we thought through all of the necessary components and maneuvers Rocky
needs to complete. The autonomous code is outlined in the later section on Autonomous
Mode.

3.10.3 RC Mode

Rocky uses RC control for the obstacle course portion of the challenge. Channel 2 controls
forward and backward motion and Channel 1 controls left and right pivoting. Channel 5 is a
switch that triggers either RC mode or the Autonomous loop. Channel 6 is another switch
that triggers either RC use of the tri-lobe wheels or the arm, which are both controlled by
Channel 4. The arm and tri-lobe wheels never need to be RC controlled simultaneously.
Channel 3 has been finicky and giving Rocky issues in RC mode, so we chose to avoid using
it.

• DriveServoRC(): The DriveServosRC() function utilizes five of the six receiver chan-
nels on the FlySkyCT6B remote controller to write microsecond pulses to Rockys 5
motors based on the actuation of the joysticks. The neutral pulse width for this method
is 1550 microseconds. There are three modes devoted to RC control, the tri-lobe wheel
mode, back wheel mode, and arm mode. The pivot point steering is controlled by
subtracting a variable called CalcHold from neutral for the motor that is turning back-
ward, while the forward motor gets the raw pulse value. CalcHold is determined by
the absolute value of the di↵erence between the neutral value and the value written to
the turning motor.

3.10.4 Autonomous Mode

• GetData(): GetData() function is responsible for reading data from four proximity
sensors, and 2 light sensors. It is called approximately every 20-40 milliseconds de-
pending on the navigational method that is running. Every data variable is set to
zero before calling the analogRead function of its corresponding pin on the RAMB T3.
Each data variable comes from the average of a hundred sampled values for improved

3 Detailed Design and Analysis 28

consistency, and generates the di↵erence variables for use in their respective naviga-
tional modes. A number of print statements are included in this method that write to
the serial monitor for debugging purposes.

• Autonomous Drive Functions: The autonomous drive functions consist command
specific microsecond pulses to the right and left DC motors for the back wheels in order
to drive Rocky through autonomous tasks. There is an optional input for specifying
the amount of delay time after the command is executed to constrain the distance that
Rocky travels. The microsecond pulse lengths were determined by trial and error and
are considered specific to our DC motors and drivetrain. This is because the motors
did not respond to equal pulse lengths with equal power output. There were two
autonomous drive functions that deserve further explanation, namely DriveReady()
and DepositLeave(). DriveReady() wrote pulses to the Front Tri-lobe Wheels for the
purpose of rotating them to a point where one lobe was perpendicular to the ground,
which is the most e�cient driving configuration for Rocky. The right prox sensors
ability to sense a sharp decrease in distance each time tri-lobe units passed in front of
it was utilized to implement a delay in the ForwardTri() drive function such that Rocky
consistently stops in the ready position every time. The DepositLeave() function runs
series of commands that deposit the medkit in the basket, backs up until the prongs
are clear of the medkit, and then lifts of the arm again to prepare to go save another
victim.

• LightSensing(): The LightSensing() function is responsible for implementing the light
following algorithm and calling the DepositLeave() drive method when the center prox-
imity sensor reads a distance smaller than 10 inches away. Rocky checks approximately
every 40 milliseconds to see if conditions for darkness or light are met, then proceeds
to drive toward the light source using di↵erential steering in response to sensor values
from the left and right light sensors. The correction factor for turning Rocky is the
di↵erence between the two light sensor readings with the default response being going
forward at a speed less than 1 ft/s.

• ChuteNav(): The ChuteNav() function is responsible for getting Rocky through an
area that has continuous walls on either side. This is mainly because the proximity
sensors have a very small field of view and were not mounted with an actuation mech-
anism for scanning. The minimum distance to trigger chute navigation is 10 inches
from the left or right proximity sensors while the distance to trigger light sensing must
be greater than approximately 2.5 feet. When inside the chute the robot employs dif-
ferential steering based on the ratio of the left and right prox sensors to keep Rocky
at an equal distance from both walls.

• DriveReady(): The DriveReady() function solves the problem we were initially hav-
ing regarding insu�cient traction on the back wheels. The cause was that having two
points of contact with the ground reduced the traction on the rear wheels as the tri-
lobe wheels were not quite even. Rocky drives much better with only one point of
contact from each tri-lobe wheel, and with the touching lobe angled slightly forward.
We decided to a�x an optical encoder to the front shaft to accurately relay the position

4 Specifications 29

(a) (b)

Fig. 23: (a) shows the front wheel orientation of Rocky when it is not ready to drive. (b)
shows the orientation when it is ready to drive.

in order for us to position the wheels autonomously for the best drive configuration
before and after going over the wall. The Vex Robotics optical encoder, however, was
inconsistently sending out data and did not provide for a robust solution. Instead,
the placement of the side prox sensors, which were unintentionally attached so that
the tri-lobe wheels sometimes blocked them, was utilized to sense the rotation point of
the tri-lobe wheels and was able to halt them in the desired position on a consistent
position. (Figure 23)

• WallTraversal(): The wall traversal code is responsible for finding the wall using the
center prox, then driving the Tri-lobe wheels until the back proximity sensor detects an
object that is greater than approximately 9 inches away. This segment of the code is
relatively simple and utilizes the fact that the Tri-lobe Wheels are mechanically linked
allowing us to assume that the robot gets over the wall without changing its orientation
with regards to the back sensor.

4 Specifications

4.1 Drive Train Specifications

The chassis dimensions were chosen to accomodate all the electronics required to power the
drive train and arm. In addition the length was chosen to allow both sets of wheels to sit
without overlap or locking. The width was chosen to have the motor mounts fit on the same
axis without overlap.

After deciding on using the drivetrain to get over the wall, a wheel with radius greater
than the height of the step was required to feasibly drive the robot over the wall. A 14”
diameter back wheel was chosen because it matched the design constraint and was available
for free in the shop. The front wheel diameter was chosen to ensure the robot made contact
with the step and was long enough to push it past the center of mass.

After geometrical considerations for the position of the robot as it landed after traversing
the wall, 22” antennae were added at ⇡ 24o to provided extra support on collision with the
ground and prevent the robot from tipping over.

The derivation of the other drive train specifications are shown in the appendix.

4 Specifications 30

Parameters Value

Max Width (in) 20
Max Length (in) 30
Max Height (in) 26
Front Wheel Radius (in) 7.75
Back Wheel Diameter (in) 14
Antenna Length (in) 22
Weight (lb) 41.19
Delivery Time (s) 135
Gear Ratio 20.00
Wheel Torque (ft-lb) 16.00
Max Velocity (ft/s) 1.99
Lifting Torque (ft-lbs) 11.64

Tab. 1: Drive Train Specifications

4.2 Arm Specifications

Length was chosen to accomodate the medkit being fit in the receptacle, but short enough
to be below the maximum torque provided by the motor of 40in � lbs. Figure 1 shows
that the passive gripper has to be between 1” and 1.25” wide. The prongs on the gripper
were therefore designed to fit the design requirement with clearance on both ends of the
requirement.

The stowing angle was chosen to ensure the arm was high enough o↵ the electronics
board that it did not interfere with the electronics, but low enough that it did not interfere
with traversing the wall.

The pick up angle is for the most part adjustable, but is ⇡ 90o. The prongs on the arm
were designed to be deep enough to allow easy pick up at ⇡ 90o. The arm was designed to
be as light as possible to reduce the overall weight of the robot. The other parameters are
derived in the appendix.

4 Specifications 31

Parameters Value

Length (in) 11
Prong Separation (in) 1.1
Stowing Angle (o) 15
Pickup Angle (o) 90
Arm Weight (lb) 0.8
Medkit Weight (lb) 1
Motor Torque (in-lb) 40
Arm Torque (in-lb) 11
Drop Time (s) 5
Raise Time (s) 6.5

Tab. 2: Arm Specifications

4.3 Power Specifications

Figure 9 shows the online calculator used to find the power requirements based on the inputs
of the DC motors. Assumed motor current is calculated as an average of the current required
for the motor controllers and motors.

Parameters Value

Assumed Motor Current Draw (A) 20
Continuous Battery Draw (W) 865
Min. Required Battery Voltage (V) 12
Idle Motors Battery Life (hrs) 117
Min. Battery Life 5min14s
Typical Battery Life 5min49s

Tab. 3: Power Specifications

4.4 Operational and Navigational Modes

4.4.1 RC/Manual Mode

When navigating the course in manual mode, Rocky will drive with one of the lobes on the
tri-lobe wheels in contact with the ground. This allows better weight distribution over the
back wheel and consequently provides better torque and increases steering controllability. In
addition to the weight distribution, the large gear ratio also contributes to the steering control
but is at the expense of a greater top speed. This control should facilitate easier movement
through the obstacle course, saving time by preventing unnecessary turning corrections.

Although Rocky has a large chassis, the tri-lobe wheels provide a way of getting over
unexpected bumps. Turning the tri-lobe wheels moves the robot forward and over a bump,
and the back wheels can drive over easily. This will only be implemented if necessary,

5 Testing Methods and Results 32

however, as we would prefer to keep the tri-lobe wheels passive until they are activated to
climb the wall.

Therefore the medkit will be picked up manually and be driven through the obstacle
course in RC mode and the robot will remain in RC mode until reaching the wall, where it
is switched to autonomous in line with the course specifications.

4.4.2 Autonomous Mode

Once Rocky reaches the wall, it will be switched into autonomous mode. Using the center
proximity sensor, Rockys lobe wheels will begin turning once Rocky is the correct distance
from the wall. The wheels will turn at a pre-prescribed speed, and the tri-lobe wheels will
rotate until Rocky is on the other side of the wall. The antennae prevent Rocky from flipping
over and a proximity sensor at the back of the robot lets it know when it has traversed the
wall.

The tri-lobe wheels will then be set into a home position using limit switches to ensure
proper sliding. Once Rocky conquers the wall, the two side proximity sensors, mounted in
the front of the robot, will ensure that Rocky’s flawless navigation through the chute. The
robot is rear wheel drive and the sensors are in the front, meaning that Rocky will know
where it is at all times. Even though Rocky has a large chassis, the low gearing will allow
for controlled turning in the chute.

Finally, Rocky will spin in a circle, use two light sensors to triangulate the light source,
and navigate to the source until he is a pre-determined distance away as determined by the
proximity sensor. Then, the arm will lower the medical kit into the basket, and Rocky will
drive away, leaving the kit in the basket.

5 Testing Methods and Results

5.1 Testing Methods

When developing Rocky, we tested every component thoroughly before proceeding to the
next step, but also worked on machining and coding in parallel to increase our productivity.
Prototyping was a key component of the testing process, such that most components had
been tested in some form or another before their final manufacturing. For example, we
made a prototype medical kit retrieval arm such that we could test the operation of the
code and the motor while we were still manufacturing the final version of the arm. This
prototype was also helpful in determining the final geometry of the arm. In addition, the
gear transition components, which connected the intermediate sprockets, were fabricated
twice: once as a prototype, and then again, taking into account some of the stability issues
that were discovered the first time. A similar process was also used for the electronics guard.
Coding the sensors started with separate test methods that interpreted and output the data
to the Serial Monitor. Once the sensor input was read in correctly, a method was added
to our larger program and was called either by the Autonomous or RC loop for testing in
context. We worked in reverse order, developing the light sensing algorithm, then the arm
code, followed by the chute, and finally concluding with autonomous wall traversal. Keeping
each component isolated was crucial in debugging and developing the code.

5 Testing Methods and Results 33

Mechanically, we performed multiple drop tests of Rocky, and realized that we should add
shock absorbers to the electronics board to prevent the acrylic base from cracking and protect
the sensitive components. However, the drop tests did not phase Rocky, and he proved to be
very robust. After many successful wall traversal tests, both open-looped and autonomously,
Rocky has begun to fatigue and the tri-lobe wheels are looser on the shaft than when they
were first manufactured. They now exhibit some roll from side to side, which is problematic
when attempting to pivot. We tested Rocky on the vinyl floor of the Civil Engineering Wing
two days before Deans Date and noticed that the tri-lobe wheels were getting caught and
the back wheels had very poor traction. Cleaning the tri-lobe wheels to decrease friction
and adding rubber traction to the back wheels improved Rockys maneuverability greatly.

5.2 Testing Results

Total course traversal time, excluding obstacle course, is approximately 2 minutes.

5.2.1 RC Retrieval of Med Kit

Collection time depends on accuracy of driving up to medical kit. Typically takes approxi-
mately 20 seconds. Approximately 7 seconds to lift arm once medical kit has been collected.

5.2.2 Wall Traversal

Total time to breach the wall is approximately 8 seconds. This includes 3 seconds of approach,
4 seconds to climb, and 1 to stop. This has been very consistent throughout approximately
50 trials.

5.2.3 Chute Navigation

Total time to navigate the chute is approximately 35 seconds. This depends somewhat on
the level of traction that is achieved by the wheels and thus the turning times.

5.2.4 Light Sensing

Seeking the light varies somewhat with the level of traction possible with the rear wheels.
This varies from approximately 30 to 45 seconds. The exact position of the front lobe wheels
influences the traction significantly.

5.2.5 Dropping O↵ Med Kit

Total time to deposit the medical kit is approximately 11 seconds. This includes 5 seconds
to lower the kit into the basket, 1 second to reverse, and 5 seconds to lift the arm back into
position.

6 Conclusions and Future Work 34

6 Conclusions and Future Work

As explained in the executive summary, our robot design is not intended to perform well
in a wide variety of terrain situations. Taking into consideration the time and budgetary
constraints for the project, we decided to make a robot that would consistently perform well
on the predetermined course rather than one that would be able to handle any given terrain.
We debated a number of designs including tank treads, deployable mobile bridges, active
claws, and wheels big enough to just drive over the wall with speed. We ended up choosing a
design that would be simple enough to perform predictably and consistently, but also could
be put together comfortably in the allotted time.

On completion and extensive testing of the robot, we are very pleased with our design.
The front wheels lift the robot over the wall very reliably, and their solid, single-piece con-
struction puts them at a very low risk of breaking. Additionally, rotating the front wheels
allows us to change the height of the front of the robot as well as the distribution of weight
between the front and rear wheels. The pneumatic rear wheels work well apart from the fact
that they are prone to occasional skidding, so the ability to transfer weight to the back of
the robot allows us to eliminate skidding by increasing friction. Because the coe�cient of
friction of the rear wheels on linoleum is lower than we anticipated, we stretched a sheet of
high friction latex across the surface of the wheels to increase friction. This results in more
consistent turns and generally better performance. With more time we would choose a more
permanent solution to this issue - perhaps wheels that are made of a material that has a
significantly higher coe�cient of friction on linoleum.

In total we used six sensors: one proximity sensor for each side of the robot and two
light sensors for the front. This arrangement of sensors enabled our robot to perform consis-
tently on the predetermined obstacle course, but the arrangement and type of sensors could
certainly limit the performance of the robot in other circumstances. The robot has blind
spots on all four corners, so it would not be well suited for sensing small obstacles that are
in any of these locations. Additionally, because the light sensors on the front have a narrow
range of vision, they would not be well suited for guiding the robot on uneven terrain. A
future iteration of our robot could include sensors that are better suited for a wide range
of conditions such as cameras, GPS, and laser scanners. Furthermore, our robot could be
made lighter and more robust.

The arm was designed to be as simple and solid as possible, and we are comfortable
that our arm will perform without any problems. Because the design is simple and involves
minimal moving parts, if the med kit retrieval or deposit fails it will almost certainly be due
to a failure of the code or sensors rather than the arm itself.

We are comfortable that our robot will be able to navigate the course with around a 90
percent chance of complete success on the first run. Our uncertainty is mostly due to the
frictional issues that we realised only when testing on the linoleum floor after the robot was
fully constructed.

References

[1] Stair Climbing Robot : Engineering. Extreme Projects, 14 Mar. 2012. Web. 27 Mar.

6 Conclusions and Future Work 35

2014.
http : //www.engineering.xtremeprojects.net/2012/01/mechanical � engineering �
project� stair � climbing � robot.html

[2] ”Urbie” Urban Robot during Vision-guided, Autonomous Stair Climbing. Robotics.
NASA and JPL, n.d. Web. 27 Mar. 2014.
https : //www � robotics.jpl.nasa.gov/systems/urbie

i

mage.html

[3] Princeton Robot Race - Final Project from MAE 322 (Mechanical Design), Spring 2013.
YouTube. YouTube, 20 Dec. 2013. Web. 27 Mar. 2014.
http : //www.youtube.com/watch?v = AHvUBQvBC0o

[4] Measuring the Performance and Intelligence of Systems: Proceeding of the 2000 PerMIS
Workshop. August 14-16, 2000. Edited by A.M. Meystel and E.R.Messina
http : //books.google.com/books?hl = en&lr = &id = yAhRAAAAMAAJ&oi =
fnd&pg = PA253&dq = search + and + rescue + robot&ots = 3bX

I

0f1iV&sig =
Q

tk5hj5mtAWSNG7FScJaeIKRac#v = onepage&q = search

[5] T. Kamegawaa, T. Yamasaki, H. Igarashi and F. Matsuno Development of The Snake-
like Rescue Robot ”KOHGA” ICRA (April 2004) 5081-5086.
http : //ieeexplore.ieee.org/stamp/stamp.jsp?tp = &arnumber = 1302523&tag = 1

[6] Springer Handbook of Robotics Springer 2008. Edited by Bruno Siciliano, Oussama
Khatib. 1158 - 1163
http : //searchit.princeton.edu/primo

l

ibrary/libweb/action/dlDisplay.do?docId =
PRN

V

OY AGER5558993&vid = PRINCETON&institution = PRN

[7] Duncan Graham-Rowe Amoebalike Robots for Search and Rescue MIT Technology Re-
view, March 29, 2007.
http : //www.technologyreview.com/news/407603/amoebalike�robots�for�search�
and� rescue/

[8] Robot Mesh .
http : //www.robotmesh.com/rover� 5� tank� kit� powered� by� arduino� and�
bluetooth?gclid = COyexMHQ

L

0CFaV QOgod9hAAog

[9] Stair climbing robot - mechanical engineering project YouTube. YouTube, 24 May. 2012.
Web. 7 May. 2014.
https : //www.youtube.com/watch?v = cl27Y Z1JY jI

A Milestones 36

A Milestones

Milestone Expected Date Achieved Date

Demostrate Drive Train (OL) 3/28/2014 3/28/2014
Autonomous Navigation to Light Source (CL) 4/4/2014 4/4/2014
Traverse Wall (OL) 4/11/2014 4/16/2014
Object Retrieval and Placement (OL) 4/25/2014 4/25/2014
Object Retrieval and Placement (CL) 5/2/2014 5/2/2014
Final Competition 5/13/2014 5/13/2014

Tab. 4: Milestones

B Budget

Tab. 5: Budget

C Timecard 37

C Timecard

Tab. 6: Timecard with total time of 958.5hrs

D Material List 38

D Material List

Tab. 7: Pricing of Mechanical Parts

Tab. 8: Pricing of Electrical Parts

E Chain Pitch 39

E Chain Pitch

Tab. 9: Chain Pitch

F IR Sensor Data 40

F IR Sensor Data

Tab. 10: IR Sensor Data

G Derivation Specifications

G.1 Drive Train Specifications

G.1.1 Delivery Time

From 4 we see that the minimal amount of distance covered by the robot is 80ft, 45ft under
RC and 35 autonomous. For the autonomous portion of the course the robot will be moving
at ⇡ 0.5ft/s and under RC at ⇡ 1ft/s, the time taken to traverse the wall is approximated
to 20s from trials.

T
min

=
45

1
+

35

0.5
+ 20

T
min

= 135s = 2min15s

G.1.2 Gear Ratio

From 17 we can see that the maximum torque required for the rear wheel is approximately
9.25ft� lbs. The drill motor has a specified torque of 0.8ft� lbs as tested in the shop. The

G Derivation Specifications 41

torque ratio is used to obtain the gear ratio:

R =
T
wheel

T
motor

R =
9.25

0.8
R = 11.6

A minimum gear ratio of 12:1 is required to get the minimum amout of torque required on
the rear wheel. There was a surplus of 5:1 and 4:1 gears in the shop, so a 20:1 gear ratio was
decided on, as it fit the necessary design constraint and reduced the total cost of the robot.

G.1.3 Wheel Torque

Given the gear ratio of 20:1, and drill motor torque of 0.8ft � lbs, the wheel torque is
calculated as:

T
wheel

= R⇥ T
motor

T
wheel

= 20⇥ 0.8

T
wheel

= 16ft� lbs

G.1.4 Maximum Velocity

Maximum velocity is calculated taking the revolutions per minute of the drill motor into
account. The drill motors are specified at 650 rpm. The 20:1 gear ratio, put the wheels at
650
20 = 32.5rpm. The rear wheels have a diameter of 14”.

CircumfrenceofWheel = ⇡ ⇥D = 43.9800

V
max

=
32.5⇥ 43.98

60⇥ 12
V
max

= 1.99ft/s

G.1.5 Lifting Torque

The lift torque is that which is required by the front tri-lobe wheels to lift Rocky up on the
first step. From 15, we obtain the lifting force required to be 42.2lbs

T
lift

=
F
lift

⇥ radius

12
T
lift

= 27.3ft� lbs

G.1.6 Pull Torque

The pull torque is that required by the front tri-lobe wheels to pull Rocky over the second
step after it has engaged the step (17), we know the pull force to be 34.2lbs

T
pull

=
F
pull

⇥ radius

12
T
pull

= 22.1ft� lbs

H Code 42

G.2 Derivation of Arm Parameters

G.2.1 Arm Torque

The arm torque is given by:
T
arm

= W
medkit

⇥ L
arm

T
arm

= 11in� lbs

G.2.2 Drop Time

The time taken for the arm to drop the medkit is 5s, which is prescribed in the code.

G.2.3 Raise Time

The arm motor operates at 4rpm, therefore the drop time is calculated by:

t =
Revolution of Arm

4

t =
165
360

4
t = 0.1145min = 6.5s

H Code

#inc lude <Servo . h> // Import the Servo Library

// Defau l t Optional Inputs f o r Drive Methods
void BackUp(i n t delayLength = 0) ;
void Forward (i n t delayLength = 0) ;
void ForwardTri (i n t delayLength = 0) ;
void Halt (i n t delayLength = 0) ;
void HaltTri (i n t delayLength = 0) ;
void Right (i n t delayLength = 0) ;
void Le f t (i n t delayLength = 0) ;
void PivotRight (i n t delayLength = 0) ;
void PivotLe f t (i n t delayLength = 0) ;
void Dropof f (i n t delayLength = 0) ;
void LiftUp (i n t delayLength = 0) ;

// I n i t i a l i z e Rece iver Var i ab l e s
i n t Ch1 ; // Right S t i ck Y�ax i s
i n t Ch2 ; // Right S t i ck X�ax i s
i n t Ch4 ; // Le f t S t i ck Y�ax i s
i n t Ch5 ; // Auto/RC

H Code 43

i n t Ch6 ; // Arm/Tri�l obe wheel
i n t CalcHold ; // Var iab le to hold c a l c u l a t i o n s f o r s t e e r i n g c o r r e c t i o n s

// Sensor Pins
const i n t l e f t l i g h t p i n = A0 ; // Le f t Light Sensor
const i n t r i g h t l i g h t p i n = A1 ; //Right Light Sensor
const i n t RProxpin = A2 ; //Right Proximity Sensor
const i n t CProxpin = A3 ; //Center Proximity Sensor
const i n t LProxpin = A4 ; // Le f t Proximity Sensor
const i n t BProxpin = A5 ; //Back Proximity Sensor

// Sensor Values
i n t l e f t l i g h t ; // Le f t Light Sensor
i n t r i g h t l i g h t ; // Right Light Sensor
i n t LProx ; // Le f t Proximity Sensor
i n t CProx ; //Center Proximity Sensor
i n t RProx ; //Right Proximity Sensor
i n t BProx ; //Back Proximity Sensor

// Sensor D i f f e r e n t i a l s
i n t l i g h t d i f f ; // d i f f e r e n c e btwn l i g h t s en so r s
i n t p r o xd i f f ; // d i f f e r e n c e between proximity s en so r s

// Light Sensor Thresholds
i n t l i g h t b u f f e r = 12 ; // d i f f e r e n c e th r e sho ld f o r c o r r e c t i o n
i n t darkthre sho ld = 25 ; // th r e sho ld f o r FindLight ()

// Proximity Sensor Thresholds
i n t wa l l t h r e sho l d = 350 ; // Threshold f o r avo id ing wa l l s
i n t dropthresho ld = 350 ; // Threshold f o r dropping medkit i n to box
i n t en t e r th r e sho l d = 200 ; // Threshold f o r f i nd i n g the chute
i n t e x i t t h r e s h o l d = 80 ; // Threshold f o r e x i t i n g the chute

// I n i t i a l i z e Dec i s i on Making Var i ab l e s
boolean lowLight ;
boolean FoundWall ;
boolean OverWall ;
boolean LightSense ;
boolean WallTraverse ;
boolean stopbot ;
boolean dr ive ready ;
boolean foundchute ;

// Create Servo Objects as de f i n ed in the Servo . h f i l e s
Servo R DCMotor ; // Servo DC Motor Back Wheel

H Code 44

Servo L DCMotor ; // Servo DC Motor Back Wheel
Servo R DCMotor tri ; // Servo DC Motor Front Wheel
Servo L DCMotor tri ; // Servo DC Motor Front Wheel
Servo Arm Motor ; // Servo DC Motor Arm

////////////////////////////////SETUP///
void setup () {

// Set the p ins with t r an smi t t e r connec t i ons as Inputs to Rece iver
pinMode (12 , INPUT) ; //To Chan1 o f the Rece iver
pinMode (11 , INPUT) ; //To Chan2 o f the Rece iver
pinMode (9 , INPUT) ; //To Chan4 o f the Rece iver
pinMode (8 , INPUT) ; //To Chan5 o f the Rece iver
pinMode (7 , INPUT) ; //To Chan6 o f the Rece iver

// Attach Speed Cont r o l l e r (se rvo) to the board
R DCMotor . attach (0) ; //Pin 0
L DCMotor . attach (1) ; //Pin 1
R DCMotor tri . at tach (2) ; //Pin 2
L DCMotor tri . at tach (3) ; //Pin 3
Arm Motor . attach (4) ; //Pin 4
S e r i a l . begin (9600) ; // S e r i a l�to�USB at band ra t e o f 9600

}

///////////////////////////////RC METHOD//////////////////////////////////////
void DriveServosRC () // Method f o r Remote Control Dr iv ing
{

//Tri�Wheel Drive Code
i f (Ch6 <= 1600){ //Conrol Tri�Wheels with Ch4 i f Ch6 i s low

Arm Motor . wr i teMicroseconds (1515) ; // stop arm motor
i f (Ch4 < 1550 && Ch4 > 1450) { // stop lobe wheels

HaltTri () ;
}
i f (Ch4 > 1550) { // turn lobe wheels forward

R DCMotor tri . wr i teMicroseconds (Ch4) ;
L DCMotor tri . wr i teMicroseconds (Ch4) ;

}
i f (Ch4 < 1450) { // turn lobe wheels backward

R DCMotor tri . wr i teMicroseconds (Ch4) ;
L DCMotor tri . wr i teMicroseconds (Ch4) ;

}
}
//Drive Back Wheels
i f (Ch1 < 1550 && Ch1 > 1450) {//go forward or backward
R DCMotor . wr i teMicroseconds (Ch2) ;
L DCMotor . wr i teMicroseconds (Ch2) ;

H Code 45

}
i f (Ch1 > 1550){ // turn l e f t
L DCMotor . wr i teMicroseconds (1550�CalcHold) ;
CalcHold = abs (1550�Ch1) ;
R DCMotor . wr i teMicroseconds (Ch1) ;

}
i f (Ch1 < 1450){ // turn r i g h t
L DCMotor . wr i teMicroseconds (1550+CalcHold) ;
CalcHold = abs (Ch1�1550);
R DCMotor . wr i teMicroseconds (Ch1) ;

}
//Drive Arm
i f (Ch6 > 1600){ //Control arm motor with Ch4 i f Ch6 i s high

HaltTri () ;
i f (Ch4 < 1550 && Ch4 > 1450) { // stop arm motor

Arm Motor . wr i teMicroseconds (1515) ;
}
i f (Ch4 > 1550) { //move arm up

Arm Motor . wr i teMicroseconds (Ch4) ;
}
i f (Ch4 < 1450) { //move arm down

Arm Motor . wr i teMicroseconds (Ch4) ;
}

}
}

//////////////////////////AUTONOMOUS METHODS BEGIN HERE//////////////////////////

void Forward (i n t delayLength){ //Drive Back Wheels Forward
R DCMotor . wr i teMicroseconds (1610) ;
L DCMotor . wr i teMicroseconds (1600) ;
de lay (delayLength) ;

}

void BackUp(i n t delayLength){ //Drive Back Wheels Backward
R DCMotor . wr i teMicroseconds (1400) ;
L DCMotor . wr i teMicroseconds (1400) ;
de lay (delayLength) ;

}

void ForwardTri (i n t delayLength){ //Drive Tri�Wheels Forward
R DCMotor tri . wr i teMicroseconds (1650) ;
L DCMotor tri . wr i teMicroseconds (1650) ;
de lay (delayLength) ;

}

H Code 46

void BackwardTri (i n t delayLength){ //Drive Tri�Wheels Backward
R DCMotor tri . wr i teMicroseconds (1350) ;
L DCMotor tri . wr i teMicroseconds (1350) ;
de lay (delayLength) ;

}

void Halt (i n t delayLength){ //Stop Back Wheels
R DCMotor . wr i teMicroseconds (1515) ;
L DCMotor . wr i teMicroseconds (1515) ;
de lay (delayLength) ;

}

void HaltTri (i n t delayLength){ // Halt Tri�Wheels
R DCMotor tri . wr i teMicroseconds (1515) ;
L DCMotor tri . wr i teMicroseconds (1515) ;
de lay (delayLength) ;

}

void Right (i n t delayLength){ //Turn Robot Right whi l e going Forward
R DCMotor . wr i teMicroseconds (1600) ;
L DCMotor . wr i teMicroseconds (1690) ;
de lay (delayLength) ;

}

void Le f t (i n t delayLength){ //Turn Robot Le f t whi l e going Forward
R DCMotor . wr i teMicroseconds (1650) ;
L DCMotor . wr i teMicroseconds (1600) ;
de lay (delayLength) ;

}

void PivotRight (i n t delayLength){ //Pivot Turn Robot to the Right
R DCMotor . wr i teMicroseconds (1390) ;
L DCMotor . wr i teMicroseconds (1610) ;
de lay (delayLength) ;

}

void PivotLe f t (i n t delayLength){ //Pivot Turn Robot to the Le f t
R DCMotor . wr i teMicroseconds (1620) ; //1700
L DCMotor . wr i teMicroseconds (1400) ;
de lay (delayLength) ;

}

void Dropof f (i n t delayLength){//Lower arm
S e r i a l . p r i n t l n (” Lowering arm ! ”) ;
Arm Motor . wr i teMicroseconds (1710) ;

H Code 47

de lay (delayLength) ;
}

void LiftUp (i n t delayLength){// Raise arm
S e r i a l . p r i n t l n (” L i f t i n g arm ! ”) ;
Arm Motor . wr i teMicroseconds (1110) ;
de lay (delayLength) ;

}

void DriveReady (){ //Rear up on Tri�Wheels f o r Autonomous Mode
i f ((RProx > 300 && LProx > 300) | | (RProx > 300) | | (LProx > 300)){

// Set Angle f o r Tri Wheels
BackwardTri (1 0 0) ;
HaltTri (3 0 0) ;
i f ((RProx > 300 && LProx > 300) | | (RProx > 300) | | (LProx > 300)){

BackwardTri (5 0) ;
HaltTri (3 0 0) ;
ForwardTri (1 0 0) ;
HaltTri (3 0 0) ;
d r ive ready = true ;

} e l s e {
ForwardTri (1 0 0) ;
HaltTri (3 0 0) ;
d r ive ready = true ;

}
} e l s e {

BackwardTri (1 0 0) ;
HaltTri (3 0 0) ;

}
}

///////////////////////LIGHTSENSING()//////////////////////////////////////
void LightSens ing () {

///////////////////DECISION MAKING////////////////
i f ((l e f t l i g h t > darkthresho ld) && (r i g h t l i g h t > darkthresho ld)) {

//Decide i f dark or b r i gh t (r e l a t i v e l y)
lowLight = 1 ; // i t i s dark

}
e l s e {

lowLight = 0 ; // i t i s l i g h t
}
i f (CProx > dropthresho ld) { // run med k i t r e l e a s e sequence

DepositLeave () ;
}

H Code 48

e l s e i f (lowLight == 0){
// I f l i g h t then go toward i t
SeekLight () ; // Seek Light Autonomously

}
e l s e i f ((lowLight == 1) && (CProx < dropthresho ld)){

// I f i t s dark , p ivot to f i nd l i g h t
FindLight () ; //Find the Light

}
de lay (2 0) ; // Wait f o r s e rvo s to catch up
}

/////////////////////METHODS FOR LIGHTSENSING()//////////////////////////////
void FindLight (){

PivotRight () ; // p ivot u n t i l i t s e e s the l i g h t
}

void SeekLight () // Method f o r Light Sensor Driv ing
{

i f (r i g h t l i g h t < l e f t l i g h t && l i g h t d i f f > l i g h t b u f f e r){
Right () ;

}
e l s e i f (l e f t l i g h t < r i g h t l i g h t && l i g h t d i f f > l i g h t b u f f e r){

Le f t () ;
}
e l s e i f (l i g h t d i f f < l i g h t b u f f e r){

Forward () ;
}
e l s e {

Forward () ;
}
S e r i a l . p r i n t l n (” Seek Light ”) ;

}

void DepositLeave (){ // func t i on to depo s i t med k i t
Halt () ; // Stop to run arm func t i on
S e r i a l . p r i n t l n (” Stopped ! ”) ;
Arm Motor . wr i teMicroseconds (1710) ; //Lower arm
delay (5000) ;
S e r i a l . p r i n t l n (” Lowering arm ! ”) ;
Arm Motor . wr i teMicroseconds (1515) ; // pause arm whi le backing up
BackUp () ; // Back Away from MedKit
de lay (1500) ;
Halt () ;
Arm Motor . wr i teMicroseconds (1110) ; //Raise arm
S e r i a l . p r i n t l n (” L i f t i n g arm ! ”) ;

H Code 49

de lay (4000) ;
stopbot = true ; // stop robot

}
/////////////////WALL TRAVERSAL CODE/////////////////////////////

void Wall () {
i f (! FoundWall) { // I f i t hasn ’ t found the wal l , then f i nd i t

FindWall () ;

}
e l s e i f (WallTraverse && BProx > 400){ //Condit ion f o r over the wa l l

OverWall = true ;
Halt () ;
HaltTri (2 000) ;

}
e l s e i f (FoundWall && ! OverWall) { //Drive over the wa l l

Wal lTraversa l () ;
}

}
void FindWall (){ //Find the wa l l

i f (CProx > 330) {
FoundWall = true ;
S e r i a l . p r i n t l n (”Found Wall ”) ;

} e l s e {
Forward () ;

}
}
void Wal lTraversa l (){

ForwardTri () ; //Drive Tri�Wheels Forward
Forward () ;
WallTraverse = true ;

}
/////////////////CHUTE NAVIGATION CODE/////////////////////////////
void ChuteNav (){

i f (CProx < e x i t t h r e s h o l d && LProx < e x i t t h r e s h o l d && foundchute){
// sense a very f a r d i s t anc e once e x i t i n g the chute
Halt (2 000) ; // d i a gno s t i c ha l t
S e r i a l . p r i n t l n (” Exited Chute ! ”) ;
Forward (5000) ;
LightSense = true ;

} e l s e i f (foundchute) {
WallFollowD () ; // f o l l ow the chute

}
e l s e i f (! foundchute) { // cond i t i n to f i nd the chute

Forward () ;

H Code 50

i f (RProx > en t e r th r e sho l d && LProx > en t e r th r e sho l d) {
foundchute = true ;

}
}

}
double LDist , RDist ;
void WallFollowD () {// t r i e s to stay toward the middle

//LDist and RDist convert the proximity s enso r r ead ing s to inche s
LDist = �6.608∗pow(10 ,�13)∗pow(LProx ,5)+2.018∗pow(10 ,�9)∗pow(LProx ,4)�2.441∗pow(10 ,�6)∗pow(LProx ,3)+.001481∗pow(LProx ,2)� .4678∗LProx+70.51;
RDist = �9.593∗pow(10 ,�13)∗pow(RProx ,5)+2.808∗pow(10 ,�9)∗pow(RProx ,4)�3.248∗pow(10 ,�6)∗pow(RProx ,3)+.001880∗pow(RProx ,2)� .5657∗RProx+80.51;
//Navigates through the chute , s tay ing in the middle
i f (RDist�LDist > 6) {

PivotRight () ;
S e r i a l . p r i n t l n (” Pivot Right ”) ;

}
e l s e i f (RDist�LDist > 3) {

Right () ;
S e r i a l . p r i n t l n (” Right ”) ;

}
e l s e i f (LDist�RDist > 6) {

PivotLe f t () ;
S e r i a l . p r i n t l n (” Pivot Le f t ”) ;

}
e l s e i f (LDist�RDist > 3) {

Le f t () ;
S e r i a l . p r i n t l n (” Le f t ”) ;

}
e l s e {

Forward () ;
S e r i a l . p r i n t l n (”Going Forward ”) ;

}
}

//////////////////DATA GATHERING////////////////////
void GetData () {

//Read from Proximity Sensors
CProx = 0 ; //Center Prox
RProx = 0 ; //Right Prox
LProx = 0 ; // Le f t Prox
BProx = 0 ; //Back Prox
//Average Data Sample
f o r (i n t i = 0 ; i < 100 ; i++) {

CProx += analogRead (CProxpin) ;
RProx += analogRead (RProxpin) ;
LProx += analogRead (LProxpin) ;

H Code 51

BProx += analogRead (BProxpin) ;
}
CProx = CProx/100 ;
RProx = RProx/100 ;
LProx = LProx /100 ;
BProx = BProx/100 ;
p r o xd i f f = abs (LProx � RProx) ;

//Read from l i g h t s en s o r s
r i g h t l i g h t = 0 ; // l i g h t 1
l e f t l i g h t = 0 ; // l i g h t 0
//Average Data Sample
f o r (i n t i = 0 ; i < 100 ; i++) {

l e f t l i g h t += analogRead (l e f t l i g h t p i n) ;
r i g h t l i g h t += analogRead (r i g h t l i g h t p i n) ;

}
l e f t l i g h t = l e f t l i g h t /100 ;
r i g h t l i g h t = r i g h t l i g h t /100 ;
l i g h t d i f f = abs (l e f t l i g h t � r i g h t l i g h t) ;
/////////TEMP FOR DEBUGGING/////////
S e r i a l . p r i n t (” Right Prox : ”) ;
S e r i a l . p r i n t l n (RProx) ;
S e r i a l . p r i n t (” Center Prox : ”) ;
S e r i a l . p r i n t l n (CProx) ;
S e r i a l . p r i n t (” Le f t Prox : ”) ;
S e r i a l . p r i n t l n (LProx) ;
S e r i a l . p r i n t (”Back Prox : ”) ;
S e r i a l . p r i n t l n (BProx) ;
S e r i a l . p r i n t (” Right Light : ”) ;
S e r i a l . p r i n t l n (r i g h t l i g h t) ;
S e r i a l . p r i n t (” Le f t Light : ”) ;
S e r i a l . p r i n t l n (l e f t l i g h t) ;
S e r i a l . p r i n t l n () ;

}
/////////////////////PRINTING METHODS///
void PrintRC (){ // Pr int RC Channel Values

S e r i a l . p r i n t l n (” RC Control Mode ”) ;
S e r i a l . p r i n t (” Value Ch1 = ”) ;
S e r i a l . p r i n t l n (Ch1) ;
S e r i a l . p r i n t (” Value Ch2 = ”) ;
S e r i a l . p r i n t l n (Ch2) ;
// S e r i a l . p r i n t (” Value Ch3 = ”) ;
// S e r i a l . p r i n t l n (Ch3) ;
S e r i a l . p r i n t (” Value Ch4 = ”) ;
S e r i a l . p r i n t l n (Ch4) ;

I Acknowledgements 52

S e r i a l . p r i n t (” Control = ”) ;
S e r i a l . p r i n t l n (Ch5) ;
S e r i a l . p r i n t (” Value Ch6 = ”) ;
S e r i a l . p r i n t l n (Ch6) ;
S e r i a l . p r i n t l n (lowLight) ;
de lay (5 0 0) ;

}

///////////////////////LOOP FOR OBSTACLE COURSE/////////////////////////////////////
void loop (){

Ch5 = pu l s e In (8 , HIGH, 21000) ; //Read from Channel 5 to check mode
///////////Autonomous Mode///////////
i f (Ch5 <= 1600){

GetData () ;
// Dec i s i on t r e e f o r autonomous methods
i f (stopbot) {

Halt () ;
HaltTri () ;

} e l s e i f (L ightSense) {
LightSens ing () ;

} e l s e i f (d r ive ready) {
ChuteNav () ;

} e l s e i f (OverWall) {
DriveReady () ;

} e l s e i f (! OverWall) {
Wall () ;

}
de lay (2 0) ;

}
///////////RC Control Mode///////////
i f (Ch5 > 1600) { // Read a l l channe l s f o r input
Ch1 = pu l s e In (12 , HIGH, 21000) ;
Ch2 = pu l s e In (11 , HIGH, 21000) ;
Ch4 = pu l s e In (9 , HIGH, 21000) ;
Ch6 = pu l s e In (7 , HIGH, 21000) ;
DriveServosRC () ; //Drive Motors under RC con t r o l

}
}

I Acknowledgements

We thank Prof. Nosenchuck, Frank, Amy, Greg, Glenn, Chris, Yong and our classmates for
making this an awesome learning experience.

J Honor Code Pledge 53

J Honor Code Pledge

We pledge our honors that we have completed this assignment in accordance with university
rules and regulations. Signed, the members of team Seven Nation Army

1.000 .250

14.559

R2.250 5.750

1.000

.500

3.000

3.025

ARM

SCALE: 0.400

UNITS: INCHES

10.125

5.563

1.000

ARM STOP
SCALE: 0.400
UNITS: INCHES

20.000

10.000

.188

BASE PLATE

SCALE: 0.250

UNITS: INCHES

11.125

.188

9.500 COMPUTER BOARD
SCALE: 0.300
UNITS: INCHES

5.500

6.250

D2.750

2.750

.500

FRONT WHEEL
SCALE: 0.400
UNITS: INCHES

33.500

9.750 14.725

20.409

27.462

ROCKY
SCALE: 0.110
UNITS: INCHES

5.000

1.781

D.500

FRONT AND REAR SPROCKET
SCALE: 0.800
UNITS: INCHES

	Executive Summary
	Introduction
	Objectives of the Design
	Retrieving the Medical Kit
	Navigating the Obstacle Course
	Breaching the Wall
	Navigating the Chute
	Delivering the Medical Kit

	Preliminary Research
	Design Concept

	Detailed Design and Analysis
	Design Process
	Electric DC Motors
	Power Requirements and Power Regulation
	Electronics Layout
	Infrared Proximity Sensors
	Photoresistive Light Sensors
	Wheels and Tires
	Arm and Claw
	Static and Dynamic Analysis and Design Loads
	Control Systems
	Sensor Placement
	Code Structure Overview and Design Process
	RC Mode
	Autonomous Mode

	Specifications
	Drive Train Specifications
	Arm Specifications
	Power Specifications
	Operational and Navigational Modes
	RC/Manual Mode
	Autonomous Mode

	Testing Methods and Results
	Testing Methods
	Testing Results
	RC Retrieval of Med Kit
	Wall Traversal
	Chute Navigation
	Light Sensing
	Dropping Off Med Kit

	Conclusions and Future Work
	Milestones
	Budget
	Timecard
	Material List
	Chain Pitch
	IR Sensor Data
	Derivation Specifications
	Drive Train Specifications
	Delivery Time
	Gear Ratio
	Wheel Torque
	Maximum Velocity
	Lifting Torque
	Pull Torque

	Derivation of Arm Parameters
	Arm Torque
	Drop Time
	Raise Time

	Code
	Acknowledgements
	Honor Code Pledge
	Sheet 1
	Views
	new_view_1
	bottom_2
	right_3

	Sheet 1
	Views
	new_view_1
	top_5
	right_6

	Sheet 1
	Views
	new_view_1
	bottom_2

	Sheet 1
	Views
	new_view_1
	bottom_2

	Sheet 1
	Views
	new_view_1
	bottom_2

	Sheet 1
	Views
	new_view_3
	bottom_5
	right_6

	Sheet 1
	Views
	new_view_1
	bottom_2

