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Abstract

This report details the invention of a scalable two degree of freedom mechanism that

accurately controls the position of an end effector. This invention consists of two

motors, each of which controls the linear position of one arm via a gear rack and

pinion. The arms are joined at a hinge, which together with the two motors forms

a triangle. The position of the hinge is determined by its distance from each motor.

The motors are mounted to turntables, giving them the ability to rotate passively

with the system’s motion. Comparing the rack and pinion mechanism to a five-bar

linkage showed that the Arduino-based rack and pinion mechanism more accurately

reproduced shapes, but the Quanser-based five-bar linkage performed better at record-

ing motion. The mechanical and computational limits of the two systems provided

context for a comparison of their performance.
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Chapter 1

Introduction

1.1 Project Overview and Purpose

This report details the invention of a scalable two degree of freedom mechanism that

accurately controls the position of an end effector. After examining existing systems,

we noticed the opportunity to invent a new type of mechanism for recording and

playing back motion. For a controlled comparison with our invention–the rack and

pinion mechanism–we prototyped a traditional five-bar linkage.

(a) Quanser Five-Bar Linkage (b) Arduino Rack and Pinion Mechanism

Figure 1.1: A Visual Comparison of the Two Mechanisms

The five-bar linkage manufactured in the first phase of this project interfaces with a

Quanser Easy-PCE data acquisition board. The Quanser board connects to MATLAB

and Simulink models to read encoders, interpret data, and output motor voltages with

millisecond precision (see Appendix B). The rack and pinion mechanism manufactured

in the second phase of the project interfaces with an Arduino Uno (see Appendix

D). This mechanism is more accurate and incorporates what we learned from the
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development and testing of the five-bar linkage. While the comparison of these two

mechanisms is not entirely fair due to differences in the controllers and motors, testing

nonetheless revealed the advantages and disadvantages of each mechanical system.

The two systems are shown side by side in Figure 1.1.

We compared the ability of each system to record and play back different types of

motion. We predicted that the rack and pinion mechanism would allow for more ac-

curate control of the end effector’s position and would reduce amplification of physical

error but that the five-bar linkage would be easier to move when recording motion.

Although our motivation for this project was to learn about designing, manufac-

turing, and controlling mechanisms, we wanted to link it to possible applications.

This project relates to a wide range of applications as many situations call for the

accurate capture and playback of physical motion. Though our project is a proto-

type, similar apparatuses could be used to accurately reproduce, scale, and control

physical motion. Possible applications include robotic surgery, training motor skills,

and automated manufacturing.

1.2 Background Research and Influence on Design

Our initial project was inspired by a Japanese trash can robot that tracks crumpled

paper ball projectiles and moves autonomously to catch them [14]. The robot uses

computer vision algorithms to find a user-tossed ball, so they toss it and leave its

coordinates unknown to the robot [11]. Our team wanted to re-derive the concept,

obtain more consistent results, and apply the knowledge to a more interesting ap-

plication, such as hitting the projectile back to the user. The five-bar linkage was

initially designed and manufactured with this intent in mind. However, the computer

vision portion of the project did not coincide with the interests of team members,

leading to our decision to pivot our project concept and to find a way of repurposing

the five-bar linkage.

After researching many different uses of two degree of freedom mechanisms, we

learned about the Polygraph used in the 1800s by Thomas Jefferson to copy physical

writing. John Isaac Hawkins patented the Polygraph in 1803, and Jefferson started

using it soon after to copy his letters and papers. The original Polygraph even

replicated the angle of the pen, producing a very accurate copy. Through the years,

other important figures used electrical versions of the Polygraph, now called the

Autopen, to sign documents remotely. Most famously, President Obama used an

Autopen to remotely sign the Fiscal Cliff compromise bill of 2013 into effect while on

2



vacation in Hawaii [7]. Photographs are shown in Figure 1.2.

Because the Autopen uses a five-bar linkage, we repurposed the Quanser mecha-

nism to test its ability to record and play back motion. After testing, we decided to

make a second mechanism better suited to the task and developed the concept of the

rack and pinion mechanism. Our design requires less space to achieve the same range

of accurate motion and is also easy to implement using store-bought parts.

(a) President Jefferson’s Polygraph [7] (b) President Obama’s Autopen [7]

Figure 1.2: A Visual Comparison of the Polygraph and Autopen

The decision to initially proceed with a five-bar linkage was based on Profes-

sor Littman’s recommendation and on our access to the Quanser servo motors [12].

Instead of purchasing new motors and encoders, the Quanser servo motors were a

pre-built solution that saved time and money in the first phase of the project. How-

ever, we desired a larger range of motion than that provided by Quanser’s 2DOF

Robot kit, which is 10 inches across, so we manufactured and constructed our own

three-foot wide mechanism.

Using materials provided by Professor Clarence Rowley of Princeton University,

we derived control laws for the five-bar linkage [4]. Derivations of the effective moment

of inertia, J , for each system are included in sections 2.3 and 3.3. The derivation of J

for the five-bar linkage is based on that found in “Experimental Study of a Two-DOF

Five Bar Close-Loop Mechanism” [13].

1.3 Design Constraints and Specifications

The budget for the entire project was $2100. $1600 came from the MAE Department

Fund, and $500 from the SEAS Fund. This was sufficient funding for both phases,

but the team opted to spend as little as possible on the first phase in order to build

an entirely new mechanism in the second phase.
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As a result, the motors and computers for the first phase were loaned from the

Princeton University Controls Laboratory, as they are the most expensive compo-

nents. The five-bar linkage was designed specifically to connect to the Quanser mo-

tors. In addition, the Quanser system gave the team a solid framework to interface

motors and sensors with Simulink and MATLAB. The first phase cost approximately

$350, leaving $1850 for the second phase, of which we spent $998. We chose to make

each arm of the linkage 18 inches long, giving the linkage a span of three feet across

to provide a comfortable range of motion for writing.

In the second phase, we chose an Arduino primarily to facilitate transportation

of our final product because the Quanser system and computers were too heavy to

move and set up for demonstrations. Using Arduino also allowed us to program our

own system and use third party motors. The second mechanism has a smaller range

of overall motion than the five-bar linkage but a similar range of accurate motion.

4



Chapter 2

Design of the Quanser Five-Bar

Linkage System

2.1 System Overview

Figure 2.1: Quanser Five-Bar Linkage System

The five-bar linkage provides two degrees of freedom and a large range of motion.

Five-bar linkages are used in many applications today, making it an ideal choice for

controlled testing. The use of readily available motors and software was optimal for

5



prototyping, understanding control algorithms, and determining the accuracy of a

typical five-bar linkage. It is controlled by a Quanser Easy-PCE board and connects

to a computer running Simulink within MATLAB. Smooth bearing joints allow for

precise and rapid movement.

2.2 Mechanical System

2.2.1 Design Concept

We chose the five-bar linkage because it provides the necessary two degrees of freedom

with the minimum number of links and allowed us to use stationary motors. We

designed the five-bar linkage to be simple, robust, and easily disassembled.

2.2.2 Physical Design

Figure 2.2: Creo Model of the Five-Bar Linkage

The five-bar linkage consists of four physical arms and a fifth arm implicitly connecting

the two fixed motors. This allows for two degrees of freedom that are controlled by

the motor angles. The Quanser 2DOF Robot kit design has a very small range of

motion with the two motors only ten inches apart. Given our initial goal of catching

projectiles, we required a larger range of motion, shown in Figure 2.7. Our modified

five-bar linkage is three feet across with each linkage measuring 18 inches in length.

The total coverage area is approximately six square feet. Each linkage consists of

two eighth-inch thick aluminum bars 18 inches long connected by staggered plastic

spacers that hold them 1.5 inches apart. This provides the necessary stiffness to

prevent bending due to excessive loading.
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The four physical linkage arms are connected by joints that consist of two self-

aligning bearings, an 8mm diameter steel shaft, and a spring to maintain constant

separation. Shaft collars constrain the joint on either side. The joint, illustrated

in Figure 2.3, has very little play and allows for easy maintenance and minimal

manufacturing due to the style of assembly.

Figure 2.3: Self-Aligning Bearing Joint

The connection to the motors consists of a reinforcing plate that is machined to

match the holes in the drive gear on the Quanser servo. The final setup is shown in

Figure 2.1.

The four linkage bars add up to about four pounds in weight. This could be

reduced by cutting material out of the aluminum bars. Eliminating weight would

prevent the bars from bending and also require less torque from the motors for control.

7



2.2.3 Geometry and Range of Motion

Figure 2.4: Geometry of the Five-Bar Linkage

Figure 2.4 shows the layout of the five-bar linkage. For the calculations in this section,

the left motor is labeled “A”, the three hinges are labeled “B”, “C”, and “D” (from

left to right along the linkage), and the right motor is labeled “E”. θ1 is the angle of

motor 1 from the vertical, and θ2 is the angle of motor 2 from the horizontal. The

position of interest is the position of hinge C, which has coordinates (xC , yC ). The

origin is the position of this hinge when θ1 = θ2 = 0.

Using this mechanism for position control requires two different transformations:

one to convert (xC , yC) to (θ1, θ2), and one to convert (θ1, θ2) to (xC , yC).

Converting Between Cartesian Position and Motor Angles

The following equations are used to solve for the motor angles (θ1, θ2) that will result

in a given Cartesian coordinate for the middle hinge. This calculation is used to

recreate a sequence of positions. The angles that correspond to each position are

calculated, and then the motors are forced to those angles.
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Figure 2.5: Geometry for Converting Position to Motor Angles

Figure 2.5 and the equations that follow describe the conversion from position

(xC , yC) to motor angles (θ1, θ2).

dAC =
√

(L+ xC)2 + (L− yC)2 dCE =
√

(L− xC)2 + (L− yC)2

C1 = cos−1

(
L+ xC
dAC

)
C2 = cos−1

(
L− xB
dCE

)

hB =

√
L2 −

(
dAC

2

)2

hD =

√
L2 −

(
dCE

2

)2

B =
π

2
− C1 D =

π

2
− C2

xB = xC −
dAC

2
cos(C1)− hB cos(B) xD = xC +

dCE
2

cos(C2)− hD cos(D)

yB = yC −
dAC

2
sin(C1)− hB sin(B) yD = yC +

dCE
2

sin(C2) + hD sin(D)

θ1 = sin−1

(
L+ xB
L

)
θ2 = sin−1

(
L− yD
L

)
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Figure 2.6: Geometry for Converting Motor Angles to Position

Figure 2.6 and the equations that follow describe the conversion from motor angles

(θ1, θ2) to position (xC , yC).

xB = L(sin(θ1)− 1) yB = L(1− cos(θ1))

xD = L(1− cos(θ2)) yD = L(1− sin(θ2))

dBD =
√

(xD − xB)2 + (yD − yB)2

C = sin−1

(
dBD
2L

)

B1 = tan−1

(
yD − yB
xD − xB

)
B2 =

π

2
− C −B1

xC = xB + L cos(B2) yC = yB − L sin(B2)

Range of Motion

One complication of the five-bar linkage mechanism is that for every pair of motor

angles there are two possible positions of the middle hinge, and for every hinge position

there are four possible combinations of motor angles (two angles per motor). In order

to account for this, we limit the range of the mechanism so that 6 ABC, 6 BCD,

and 6 CDE never cross 180◦. Under these conditions, the position of hinge C is

uniquely determined by the motor angles, and similarly, the motor angles are uniquely

determined by the hinge position. The restricted range of the mechanism is shown in

Figure 2.7.
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Figure 2.7: Range of motion of the five-bar linkage mechanism. The arms limiting
the range of the mechanism in each region are highlighted in red.

To determine whether or not a point is within the range of the mechanism, a

vector is first defined for each arm:

−→
AB = 〈xB − xA, yB − yA〉

−−→
BC = 〈xC − xB, yC − yB〉

−−→
CD = 〈xD − xC , yD − yC〉

−−→
DE = 〈xE − xD, yE − yD〉

By taking the cross product between an arm’s vector and the vector for the adja-

cent arm, we can characterize the angle formed at the hinge between the two arms.

For example, (
−→
AB ×

−−→
BC) · k̂ > 0 and (

−→
AB ×

−−→
BC) · k̂ < 0 would indicate a counter-

clockwise and clockwise turn, respectively, between arms AB and BC. Given the

initial geometry of our linkage, the following three constraints define the range of our

mechanism:

(
−→
AB ×

−−→
BC) · k̂ > 0 (

−−→
BC ×

−−→
CD) · k̂ > 0 (

−−→
CD ×

−−→
DE) · k̂ < 0

where k̂ is the unit vector in the positive z direction.
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Error as a Function of Position

For certain regions in the range of the five-bar linkage mechanism, small changes

in the motor angle can result in large changes in the position of the middle hinge.

Knowing how error propagates through the system helps avoid regions in which error

is most amplified.

For this mechanism, two different values were plotted over the entire range to

represent the expected error at each point. ∆p
∆θ1

and ∆p
∆θ2

represent the magnitude of

the change in position divided by the magnitude of the change in motor angle for

motors 1 and 2, respectively.

The values for these plots were found using MATLAB. For each point within the

range of the mechanism, we calculated values of θ1 and θ2 corresponding to that point.

The angle of one motor was changed by a small amount (in this case 10−5 degrees),

and a new position was calculated. The distance from the original position to the

new position was divided by the change in motor angle and plotted over the range of

the mechanism.

These values represent a numerical estimate of the partial derivative of position

with respect to motor angle. We chose this method because it is faster than explicitly

calculating the exact partial derivatives of x and y with respect to θ1 and θ2 and still

provides accurate results.

(a) Error with Respect to Motor 1 (b) Error with Respect to Motor 2

Figure 2.8: Amplification of Error for the Five-Bar Linkage Mechanism

The plots in Figure 2.8 show that the region of highest error is at the top boundary

of the range of the mechanism. Near these points, small errors in the angle of the

motors result in large errors in position. The error near the origin is relatively small,

as is the error near the boundary opposite the motor of interest.
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Figure 2.9: The geometry used in the moment of inertia derivation

2.3 Dynamics

Conservation of energy and momentum were not enough to determine the equations

of motion for the system due to the unknown reaction forces on the pinned motors.

Instead, after much algebraic manipulation, the study of the mechanism discarded

Newtonian mechanics and transitioned to use of the Lagrangian method.

For this derivation we use two sets of angles: the exterior angles θ1 and θ2, and

the interior ones, defined in Figure 2.9, termed α1 and α2. By continuity, the two sets

are related by:

sin(θ1) + sin(α1) + cos(θ2) + cos(α2) = 2

cos(θ1) + cos(α2) = sin(θ2) + sin(α2)

Solving for α1 and α2 in terms of θ1 and θ2 explicitly is difficult, particularly

because the system is not uniquely defined. For any set of θ values, there are two

valid α coordinate pairs that correspond to the intersections of two circles.

13



To relate the derivatives of α1 and α2 to θ1, θ2, θ̇1, θ̇2, there are two equivalent

routes–differentiating the position continuity equation or deriving a velocity continu-

ity equation:

θ̇1 cos(θ1) + α̇1 cos(α1)− θ̇2 sin(θ1)− α̇2 sin(α2) = 0

−θ̇1 sin(θ1)− α̇2 sin(α2) = θ̇2 cos(θ2) + α̇2 cos(α2)

Solving for α̇1 and α̇2 yields:

α̇1 =
−θ̇1 cos(α2 − θ1) + θ̇2 sin(θ2 − α2)

cos(α1 − α2)

α̇2 =
θ̇1 sin(α1 − θ1)− θ̇2 cos(θ2 − α1)

cos(α1 − α2)

The Lagrangian, L, of the system is the total kinetic energy, as there are no

potential energy effects.

L =
I

2
(θ̇2

1+θ̇2
2+α̇2

1+α̇2
2)+

mL2

8
(5θ̇2

1+5θ̇2
2+4θ̇1α̇1 cos(α1−θ1)+4θ̇2α̇2 cos(α2−θ2)+α̇2

1+α̇2
2)

The Lagrangian is related to the input torque by the equations:

d

dt

(
∂L
∂θ̇1

)
− ∂L
∂θ1

= τ1
d

dt

(
∂L
∂θ̇2

)
− ∂L
∂θ2

= τ2

Differentiating by the angular velocity and then time yields:

d

dt

(
∂L
∂θ̇1

)
= θ̈1J1

d

dt

(
∂L
∂θ̇2

)
= θ̈2J2

14



Where J1 and J2 are defined as:

J1 = I

(
1 +

sin2(α1 − θ1) + cos2(α2 − θ1)

cos2(α1 − α2)

)
+
mL2

8

(
10 + 2

(
sin2(α1 − θ1) + cos2(α2 − θ1)

cos2(α1 − α2)

)
− 8

(
cos(α1 − θ2) sin(α2 − θ1)

cos(α1 − α2)

))
J2 = I

(
1 +

sin2(α2 − θ2) + cos2(α1 − θ2)

cos2(α1 − α2)

)
+
mL2

8

(
10 + 2

(
sin2(α2 − θ2) + cos2(α1 − θ2)

cos2(α1 − α2)

)
− 8

(
cos(α2 − θ1) sin(α1 − θ2)

cos(α1 − α2)

))

The next step in a Lagrangian analysis would be differentiating ∂L
∂θ

, producing the

centrifugal terms in the equations of motion. However, by dimensional analysis, it

becomes obvious that these terms will all contain terms of θ̇2
1, θ̇2

2, and θ̇1θ̇2. For a

linearized analysis where the velocities are assumed to be small, these higher order

terms can be neglected. Under this simplifying assumption, the full dynamics of the

system become two straightforward equations:

J1θ̈1 = τ1 J2θ̈2 = τ2

The completion of this modeling allowed us to proceed to designing the control laws.

2.4 Controls

The first step in modeling the system was implementing a proportional control loop in

Simulink. Although we knew the control would be non-optimal, it allowed us to test

the reliability of the motors and encoders. We discovered that simple proportional

control was inadequate, as it led to oscillations in the motor response. We improved

this behavior by using a low-pass derivative filter to implement PD control. These

filters, while more noisy than an estimator, had the benefit of being blind to the

model. An asymptotically stable controller was found after tinkering with the gains

for PD control. Finally, in an effort to remove any steady state error, an integrator

was added into the Simulink model, allowing for full PID control. The code can be

seen in Appendix B.

For a more refined control scheme, we took advantage of the symmetry of the

system to derive a control law for a single motor. With the exception of certain

degenerate cases, θ1 and θ2 are independent. Using the model for a DC motor provided
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in Professor Rowley’s lab notes for MAE 433B [4], the state space model is:

d

dt

[
θ

θ̇

]
=

[
0 1

0 −K1

][
θ

θ̇

]
+

[
0

K2

]
u

K2 = Kt

JR
and K1 = KeK2. Kt, Ke, and R are the torque constant, the EMF

constant, and the resistance of the motor, respectively. J is the effective moment

of inertia, which is a highly non-linear function of θ1 and θ2. For the purposes of

design, the state space was linearized about the origin point, θ1 = 0 and θ2 = 0,

where J1 = J2 = 2I + 3ml2

2
= 0.177kgm2. The actual variation in J can be seen

in Figure 2.10. At degenerate pairs of angles as demonstrated in section 2.2.3 the

denominator in the J formula, cos(α1 − α2), goes to 0. This creates a singularity in

J . However, in the normal space of operation around the origin, the value of J ranges

from ≈ 0.07kgm2 to ≈ .248kgm2. Thus, when designing a controller, we consider a

range of systems as discussed in Doyle, Francis, and Tannenbaum [8].

The transfer functions using these J values are as follows:

Pavg(s) =
0.01667

s2 + (1.278× 10−4)s

Pmin(s) =
0.04164

s2 + (3.19× 10−4)s

Pmax(s) =
0.04164

s2 + (5.11× 10−5)s

The Bode plot of these plants is found in Figure 2.11.

As evident in Figure 2.11, the bandwidth of all three systems, which differ only in

the placement of one pole, is approximately 10−1 radians per second and the phase

margin is very small. Our two priorities for the system were stability and tracking, so

the task of designing a controller became one of optimizing these quantities. For this

task, the obvious choice was a PD controller of the form C(s) = kds+kp. The effects of

various controllers can be seen in Figure 2.12. By placing a zero at −kp
kd

, the slope of the

magnitude plot became more shallow and the phase increased. During initial testing,

the reduced steady state error provided by integral feedback was deemed unnecessary

for the purposes of the mechanism. In hindsight, the additional pole and zero from

a PID controller would allow for more detailed shaping of the loop function but was

not applied in this project, leaving it for future experimentation. Through physical

testing, the kp–kd pair of 200 and 10 was found to provide the best performance,

despite having the same crossover frequency as the other tested controllers and a
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Figure 2.10: The variation in the effective moment of inertia

smaller phase margin. The near-instability this causes would be troublesome for an

idealized system. However, the friction of the bearings, the slight slop in the arms,

and other non-linearities counteracted this tendency towards oscillation, leaving just

the benefit of increased rise time. LQR controllers were tested with this model but

performed considerably worse, as the framework of LQR places a higher priority on

removing overshoot. While important in this context, overshoot held a lower priority

than other factors. The performance of LQR controllers with various weights can be

seen in Figure 2.13. In the end, this analysis directed the testing approach described

later, but its particular insights were sometimes proven overly idealized for such a

complicated system.
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Figure 2.11: The Bode plots of the plant with different values of J

Figure 2.12: Bode plots of the average plant with different controllers
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(a) Simulated step response of the LQR controllers

(b) Experimental data from LQR controllers

Figure 2.13: The results of the attempt at LQR control. High values of ρ yield better
rise times, but require such high voltages that the motors saturate and shake. ρ is
the relative weight, Q/R.
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Chapter 3

Design of the Arduino Rack and

Pinion System

3.1 System Overview

Figure 3.1: Arduino Rack and Pinion System

The rack and pinion mechanism provides two degrees of freedom and is designed

for accurate position control. This invention consists of two motors, each of which

controls the linear position of one arm via a gear rack and pinion. The arms are
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joined at a hinge, which together with the two motors forms a triangle. The position

of the hinge is determined by its distance from each motor. The motors are mounted

to turntables, giving them the ability to rotate passively with the system’s motion.

Instead of using rotational motion as the Quanser five-bar linkage does, the rack and

pinion mechanism converts the rotational motion to linear translation. In addition,

the rack and pinion mechanism is powered by an Arduino, making it portable and

increasing flexibility in coding methods.

3.2 Mechanical System

3.2.1 Design Concept

We developed the rack and pinion mechanism with the goals of the five-bar linkage in

mind, but with the added goal of improving accuracy for recording and playing back

motion. The pen mount supports the hinge, which negates the effects of bending due

to gravity. We developed the idea from scratch and chose the gear rack due to its

ability to be accurately controlled. In addition, the error in the mechanism is only

dependent on the position accuracy of the motors and not the size of the mechanism

itself. The use of Arduino allows us to design our own control system and use third

party motors and components.

3.2.2 Physical Design

Figure 3.2: Creo Model of the Rack and Pinion Mechanism
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The mechanism’s arms are made out of milled aluminum with inset nylon gear racks

secured with epoxy. Each rack is sandwiched between three gears, two of which rotate

freely, and one of which is driven by a gear motor. The mounts, shown in Figure 3.3,

are centered on turntables, allowing them to rotate with the motion of the pen.

(a) Gear rack motor mount viewed from top (b) Gear rack motor mount viewed from side

Figure 3.3: Views of the Motor Mounts

This system allows for two degrees of freedom with a range of accurate motion

that easily covers a standard sheet of paper, which is ideal for its use as an Autopen.

Each arm is two feet long, one inch wide, and 5/16 inches thick with a 3/16 inch

channel milled into each side. The choice to machine the racks out of one piece of

aluminum stemmed from the difficulty in machining three pieces and sandwiching

them together. This solution provided more accuracy in machining and reduced the

number of components.

The two gear rack arms are connected by a joint, shown in Figure 3.4, with a

steel shaft that is press fit into one arm and loosely fit into the other. The shaft

has a hole milled through the center that leaves room for a spring-loaded ballpoint

pen nib. The bottom of the joint is a Delrin cylinder with a hole milled through the

center large enough to let the pen tip through but small enough so that the pen is

held securely inside the steel shaft. Two PTFE washers provide lubrication, and a

shaft collar holds the arms together. Many joint options were discussed, but this one

was by far the simplest, as it required no bearings and minimal machining.
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Figure 3.4: Joint of the Rack and Pinion Mechanism

The arms are supported by the Delrin cylinder, which negates the loading due

to gravity. This prevents the arms from relying entirely on the motor mounts for

support. The gear rack is designed to derail after a pen breaches the bounds of the

range of motion, ensuring that the motor is not damaged. The final setup of the rack

and pinion mechanism is shown in Figure 3.1.

3.2.3 Geometry and Range of Motion

Figure 3.5 shows the geometry of the rack and pinion mechanism. L1 and L2 represent

the distance from each motor to the pen. α is the angle between the left arm and the

horizontal, β is the angle between the right arm and the horizontal, and γ is the angle

formed by the two arms. The origin of the coordinate system represents the location

of the pen when L1 = L2 = L0, where L0 is the distance that causes the arms to form

a right angle. d is the spacing between the motors, which is equal to L0

√
2.
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Figure 3.5: Geometry of the Rack and Pinion Mechanism

Converting Between Arm Lengths and Pen Position

The position of the pen is controlled by changing lengths L1 and L2. The relationship

between the lengths (L1, L2) and the position of the pen (x, y) can be found using

basic trigonometry.

The conversion from arm lengths to pen position is as follows:

α = cos−1

(
L2

1 + d2 − L2
2

2dL1

)
x = L1 cos(α)− d

2
y = L1 sin(α)− d

2

The conversion from pen position to arm lengths is as follows:

α = tan−1

(
d+ 2y

d+ 2x

)
β = tan−1

(
d+ 2y

d− 2x

)
L1 =

d+ 2x

2 cos(α)
L2 =

d− 2x

2 cos(β)
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The length of each arm is controlled by a gear of diameter D that rides along the

arm’s gear rack. In order to control the position of the pen, the length of each arm

is changed by rotating the gear to a certain angle, θi. The relationship between the

gear angle and the arm length is given below for both arms.

L1 = L0 + θ1
D

2
L2 = L0 + θ2

D

2

In order to control the angle of the gear using the motor, the angle is converted

to encoder counts, ci. There are 477 counts in one revolution of the gear motor shaft,

so the relationship between θi and ci is as follows.

c1 = θ1
477

2π
c2 = θ2

477

2π

Range of Motion

To ensure that the pen position is uniquely determined by lengths L1 and L2, the y-

position of the pen is constrained to the area above the two motors. For the geometry

specified in Figure 3.5, this means that the y-position of the pen must always be

greater than −L0

√
2

2
. The x-position of the pen is limited by the maximum lengths of

arms 1 and 2, Lmax, so the left and right boundaries are formed by two circular arcs

centered on the motors. The point at which the arcs meet represents the farthest

point in the mechanism’s range. This range is shown below in Figure 3.6.

Figure 3.6: Range of Motion of the Rack and Pinion Mechanism (Shaded in Gray)
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Error as a Function of Position

To quantify the error of this mechanism, a similar approach to that of the five-bar

linkage was used, as shown in section 2.2.3. The partial derivative of the pen position

with respect to the lengths of each arm was found numerically using MATLAB, and

the values were plotted over the range of the mechanism. One important difference

is that for this mechanism, the partial derivative values are non-dimensional whereas

for the previous mechanism they were expressed in units of length.

Figure 3.7: Amplification of Error for the Rack and Pinion Mechanism

As shown in Figure 3.7, the error in the position for this mechanism is smallest

when a right angle is formed by the arms. At these points, which form an arc through

the origin, the non-dimensional error is equal to one. The highest error values occur

near the bottom of the range. This plot is useful because it shows that in order to

have the most accurate position control, the angle formed by the arms should be kept

as close to 90◦ as possible.

3.3 Dynamics

As with the five-bar linkage, the dynamics of this mechanism can be derived by finding

the effective moment of inertia. We started by rotating one motor while keeping the

other stationary. The inertia is divided into contributions from the near moving

apparatus and the far stationary apparatus. The components of the near inertia are

26



Figure 3.8: The effective moment of inertia for the left motor. The J for the right
motor would be flipped about the centerline, due to the symmetry of the system.

the gear (IG) and the translation of the near arm (mA(D
2

)2). In the far apparatus,

there is only rotational motion, so the only components are the moments of inertia of

the turntable apparatus (IS) and the arm, accounting for its rotation around a point

other than its center (IA + mA(L − Lmax

2
)2). The rotation rate in the far turntable

is not the same as that of the spinning motor, but they are related by a factor of
D sin(γ)

2L
. In this analysis, L is the distance from the pen holder to the far turntable

center, Lmax is the total length of the arm, and γ is the angle between the two arms

at the pen holder (equivalent to π
2
− (α + β)). Combining these pieces yields:

Jnear = IG +ma(
D

2
)2 +

D

2L sin(γ)
(IS + IA +mA(L− Lmax

2
)2)

For this specific mechanism, the J is calculated at the origin to have a value of

1.035 × 10−4 kgm2. A plot of J over the range of the motion is found in Figure 3.8.

The plot is relatively flat except for its singularity at the far motor. Because of this

feature, the linearized model is considered to hold for the typical range of motion.
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Figure 3.9: Plant Transfer Function for the Rack and Pinion Mechanism

3.4 Controls

With the dynamics quantified, the modeling of a control system for the rack mech-

anism followed the same pattern as the linkage. Using the motor constants and the

new J value, the system still maintained the form

d

dt

[
θ

θ̇

]
=

[
0 1

0 −K1

][
θ

θ̇

]
+

[
0

K2

]
u

with K1 = 204.7 and K2 = 8.236. In this model, the transformation between θ

and encoder counts is incorporated into the C matrix, so that the state space is still

kept in radians. The transfer function of the plant, plotted in Figure 3.9, is

P (s) =
4.747× 104

s2 + 204.7s

As with the five-bar linkage, PD control was used to place a zero before the crossover

frequency in order to increase the phase margin and bandwidth. The resulting plots

of the control system are found in Figure 3.10.
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Figure 3.10: The different controllers applied to the rack mechanism plant. Notice
the large increase in bandwidth and phase margin.

3.5 Arduino Interface

Figure 3.11: Arduino Circuit

We selected an Arduino for three reasons. First, a microcontroller provides porta-

bility and minimal power drain. Second, Arduino motor shields are more readily

available than motor shields for other microcontrollers and microprocessors. Third,

the Arduino made it easy to use third party motors.
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3.5.1 Arduino-Motor Interaction

Using the Dual MC33926 Motor Shield and complementing Arduino library facilitated

interactions between the Arduino and the two motors. This enabled direct port

reading of the motor encoders and simplified writing of PWM signals to the motors.

Attaching the motors’ Hall effect sensor encoders to the two falling-edge interrupt pins

while maintaining direct read on the secondary sensor pins allowed us to accurately

control the motor speed while rapidly and precisely updating information about the

orientations of the motors. This design was necessary because interfacing an Arduino

with motors requires manual position encoding from the raw signal output of the

motors’ sensors [5].

3.5.2 Coding the Arduino

Using a Deterministic Finite Automaton (DFA) of states, the Arduino system distin-

guishes between two primary states: gathering data from the serial port and updating

and outputting the motor’s position.

While in the data collection state, the Arduino continuously gathers the position

data that is sent via USB to the Arduino’s serial port. With the serial port’s maximum

buffer of 64 characters and the Arduino’s limited 2 kb of memory, which can only

maintain 350 lines of input or 700 integers corresponding to input motor counts, the

maximum rate of data intake is severely limited. Because of these space limitations,

our system requires a peripheral C program that pauses every 350 input points and

waits for the Arduino to draw the portions that have already been sent.

When the Arduino receives the termination string or reaches the maximum capac-

ity of data points, the information transfer pauses and the state transitions. Before

the data transfer resumes, the motors track the loaded trajectory, clearing space

for more points. The code uses two independent PD loops to control the counts of

each motor. In the update loop, our control algorithm implements discrete time PD

control. The code can be seen in Appendix D.

3.5.3 Implementing Control

To ensure that PD updates take place at approximately consistent intervals despite

inconsistent delays that might occur due to the serial writing of data or encoder

interrupts, we defined a set of constants: the frequency at which PD updates (LT ≥
10ms), the frequency at which current position data writes to the serial port (TSO ≥
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10ms), and the frequency at which the reference position updates (TSI ≥ 30ms).

LT was selected to provide as close a simulation of continuous PD control as possible.

TSO was selected to minimize the delay of LT while maximizing the frequency of

the output. TSI was selected to coincide with the settling time of each point.

Beginning initially with PD control of a single motor’s speed based on the motor

shield documentation [5], we expanded the system to handle two motors simultane-

ously. Next, we modified the program to work with PD position control rather than

speed control and implemented a position-reading interface on the Arduino that re-

ceived information over the Serial Monitor. After writing a C program that would

automatically output time-delayed CSV count data over the serial interface [3], we

optimized LT , TSO, and TSI. We found Kp = 28, Kd = 12 to be the most promising

constants for PD control on our given LT timescale. Further discussion on experi-

mentation is discussed in Chapter 4.
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Chapter 4

Testing Methods and Results

4.1 Preliminary Testing of the Five-Bar Linkage

After the completion of the five-bar linkage mechanism, some Kp–Kd pairs were tested

with simple step function inputs. The results in Figure 4.1 demonstrate the follow-

ing characteristic trends, which informed our choices of Kp and Kd. Increasing Kp

provided faster rise time and lower steady state error. At Kp values that were too

high, the motor would shake as shown in the LQR tests in Figure 2.13. Increasing

Kd reduced overshoot and oscillations. Decreasing Kd provided the fastest rise times

but caused a more oscillatory response.
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Figure 4.1: The step response of the Quanser system to a reference of x = 5, y = 5.
These runs demonstrate the trends associated with changing Kp and Kd.
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4.2 Preliminary Testing of the Rack and Pinion

System

After the early trials of the rack and pinion system, two key observations informed

our Kp and Kd selection. First, the output signals were constrained to the 400 to -400

range (corresponding to maximum and minimum PWM signals). Second, at lower

inputs, the motors were subject to stick friction. These two concepts are demonstrated

in Figure 4.2:

Figure 4.2: Unitless Diagram of Motor Saturation/Stick Friction

A control law that is accurately reflected by motor outputs requires aKp value that

never causes saturation and yet results in minimal sticking. Thus, we conceived of the

concept of a “saturation frontier.” Found experimentally from the circle trajectory

(see section 4.3), this frontier separates the pairs of Kp and Kd that cause the system’s

output signal to saturate from those that do not. This frontier later guided our choice

of Kp–Kd. The saturation frontier is shown in Figure 4.3.
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Figure 4.3: Saturation Frontier for Kp and Kd Values

For a series of Kp–Kd pairs on the saturation frontier, we calculated the Root

Mean Square error between the output trajectory and the idealized circle. With

the RMS values shown in Table 4.1, we had a basis of comparison to conclude that

Kp = 28, Kd = 18 was the most accurate PD tracking combination on the frontier

that would not lead to an output speed saturation. We selected Kp = 28, Kd = 12

as our ideal gains in order to provide a slight buffer against saturation.

Table 4.1: Root Mean Square Error of a Circular Trajectory on the Saturation Frontier

Kp Kd RMS Error (inches)

4 28 0.0563

12 24 0.0200

20 18 0.0119

28 16 0.0089

36 10 0.0092

44 0 0.0104

The serial interface provided communication between our Arduino and a com-

puter. Initially, the Serial Monitor that comes bundled with the Arduino IDE was
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sufficient to examine individual points and ensure that the code of our Arduino-motor

system worked as desired. Using the code from TodBot [3] as a baseline and modi-

fying the end user code to suit our particular Arduino needs, we developed a means

of sending entire CSV files to the Arduino from a UNIX based command prompt.

To automate testing of the system’s shape-drawing capabilities in their entirety, we

would need to design a computer program that could interface with the Arduino serial

port.

4.3 Experimental Procedure

After both mechanisms were completed, the following tests were performed in order

to determine their relative performance. For a variety of gains, the mechanisms were

fed a trajectory of points in the following shapes:

A Square

The first trajectory was a square generated in MATLAB by squaregen.m (found in

Appendix C). For the five-bar linkage mechanism, the points defining the square were

intentionally sparse to allow for some settling between points. This allowed us to see

the step response of each control law in a repeatable fashion. For the rack and pinion

mechanism, the points defining the square had to be more densely packed because

the gains chosen for the Arduino controller responded to the sparse points with too

much overshoot.

A Circle

The second trajectory allows for a direct comparison between the two mechanisms.

Both mechanisms were fed a six inch diameter circle consisting of 200 points. This

served as a test of each mechanism’s ability to perform smooth, constant motions.

Because the mechanism is constantly moving, this test places more significance on

rise time than on steady-state behavior.

An Organic Shape

This organic trajectory was recorded on the linkage mechanism in Quanser, taking one

data point every 0.001 seconds. The points followed no general pattern and formed

several intersecting loops. This test is the closest to the intended use case of these
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mechanisms, which is copying human-generated motions. By testing this path, we

examined the fidelity of each mechanism to both small and large scale details. For

the rack and pinion mechanism, the shape was scaled down by a factor of two to fit

on a piece of printer paper.

A Fast Shape

The final test is another hand-recorded shape from the Quanser system, but the arm

was moved intentionally quickly, providing a time series that would be more difficult

for the motors to copy. This allowed us to see the behavior of the two systems at the

extremes of their capabilities. As in the case of the organic shape, the fast shape was

scaled down by a factor of two for the rack and pinion mechanism.

4.4 Results of Testing

4.4.1 Quanser System Tests

The testing of the arm from a mechanical standpoint was very straightforward. After

assembly, the bearings worked smoothly. The bars themselves sagged under the

weight of the linkage, and future work may be done to lighten and strengthen the

design. This sagging pulls the linkage away from the motors when the system is

unpowered, but not with enough force to affect the output. The testing for the PD

control, following the above procedure, can be seen in Figures 4.4 through 4.7.
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Square

(a) Path Overview

(b) Closeup View

Figure 4.4: Different Kp–Kd pairs following the same square trajectory
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Circle

(a) Path Overview

(b) Closeup View

Figure 4.5: Different Kp–Kd pairs following the same circular trajectory
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Organic Shape

(a) Path Overview

(b) Closeup View

Figure 4.6: Different Kp–Kd pairs following the same hand recorded trajectory
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Fast Shape

(a) Path Overview

(b) Closeup View

Figure 4.7: Different Kp–Kd pairs following the same unreasonably fast trajectory
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Trends

The first three plots show that the worst tracking pair (Kp = 100, Kd = 50), drawn

in dark green) lagged consistently on the interior of the reference shape. Increasing

Kp to 150, as shown by the purple line, improved tracking slightly, but there was

still significant lag. Reducing Kd increased the rise time which improved the tracking

more than increasing Kp. A value of Kd = 10 provided good tracking, as evident

in the Kp lines of 100, 150, and 200. For contrast, a Kd = 0 line was also plotted,

and while it fared decently on the square, it oscillated in and out of the circle and

remained on the outside of the organic shape.

Unlike the other test trajectories, the fast shape provided a less clear trend, but ul-

timately followed the same overall behavior. Because the motors saturated so quickly,

the different Kp values made little difference in the performance of the mechanism.

The pairs at Kd = 50 provided the worst tracking. With less damping, the Kd = 10

gains tracked better. The significant outlier was the Kd = 0 gain, which, because it

had no derivative dependence, overshot the reference trajectory.

After weighing all of this data, the optimal pair of gains was found to be Kp = 200

and Kd = 10. The Bode plots of this controller based on the three variants of the

plant model are shown in Figure 4.8.

Figure 4.8: Bode plots of the best controller, 10s+ 200
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Accuracy and Precision

Figures 4.4 through 4.7 represent a single trial for each gain pair, but they are all rep-

resentative of multiple trials with little variance. As an example, Figure 4.9 shows two

step responses with the same Kp and Kd values. The plots are practically identical,

demonstrating the precision of the linkage system.

Figure 4.9: Repeatability Testing of Quanser System

On the other hand, the accuracy of the linkage was not as strong. When running

more than five to ten inches away from the origin, small errors in the zeroing of the

encoders became more pronounced. While the coordinates were internally consistent,

plotting a square could have easily become a parallelogram if the mechanism were

not set up to the proper specifications.

4.4.2 Arduino System Tests

In the plots in this section, the red line represents the reference trajectory and the

blue line represents the actual trajectory followed by the rack and pinion mecha-

nism. Section 4.4.3 includes an in-depth analysis of the Arduino tests, and section

4.3 includes a description of each test.
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Square

(a) Path Overview (b) Closeup View

Figure 4.10: Reference and Actual Position for Kp = 4, Kd = 4

(a) Path Overview (b) Closeup View

Figure 4.11: Reference and Actual Position for Kp = 28, Kd = 12

(a) Path Overview (b) Closeup View

Figure 4.12: Reference and Actual Position for Kp = 40, Kd = 28
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Circle

(a) Path Overview (b) Closeup View

Figure 4.13: Reference and Actual Position for Kp = 4, Kd = 4

(a) Path Overview (b) Closeup View

Figure 4.14: Reference and Actual Position for Kp = 28, Kd = 12

(a) Path Overview (b) Closeup View

Figure 4.15: Reference and Actual Position for Kp = 40, Kd = 28
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Organic Shape

(a) Path Overview (b) Closeup View

Figure 4.16: Reference and Actual Position for Kp = 4, Kd = 4

(a) Path Overview (b) Closeup View

Figure 4.17: Reference and Actual Position for Kp = 28, Kd = 12

(a) Path Overview (b) Closeup View

Figure 4.18: Reference and Actual Position for Kp = 40, Kd = 28
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Fast Shape

(a) Path Overview (b) Closeup View

Figure 4.19: Reference and Actual Position for Kp = 4, Kd = 4

(a) Path Overview (b) Closeup View

Figure 4.20: Reference and Actual Position for Kp = 28, Kd = 12

(a) Path Overview (b) Closeup View

Figure 4.21: Reference and Actual Position for Kp = 40, Kd = 28
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4.4.3 Trends

Figures 4.10 through 4.21 show that while lower values of Kp resulted in a smoother

line, this line was not always accurate because the position sometimes remained far

from the reference trajectory over a long distance. Higher values of Kp generally

caused quick oscillation of the mechanism, resulting in a bumpy line that never strayed

far from the reference trajectory.

These tests made it clear that there is a tradeoff between smoothness and accuracy

when selecting values for Kp and Kd. A relatively high value for Kp paired with a

value for Kd that avoids saturation of the motors provides the closest tracking. The

ideal pair of values that we found for this case was Kp = 28, Kd = 12. However, if

the goal is to form smooth lines that qualitatively mimic human motions, then it is

best to choose a lower value for Kp to avoid vibration of the motors.
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Chapter 5

Analysis and Comparison of

Mechanisms

5.1 Physical Mechanism

One main difference between the five-bar linkage and the rack and pinion mechanism

is the effective moment of inertia of the two systems. There are two factors that

contribute to the higher moment of inertia of the five-bar linkage: the first is that the

system has more mass, and the second is that the center of mass of the linkage arms

is located far from the axes of rotation of the motors.

When one motor of the 5-bar linkage rotates, it affects three of the four bars. The

motors of the rack and pinion mechanism, on the other hand, only translates the near

bar along its axis and rotates the far bar by applying a force at its end. The rack

and pinion mechanism provides greater mechanical advantage. This can be seen in

the accuracy of the position results in Figure 5.1.
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Figure 5.1: Comparisons of the two systems on the four trajectories. The left column
is the Quanser system, and the right column is the Arduino system.
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Other characteristics are also affected by the difference in mechanical advantage

between the two systems. One positive feature of the five-bar linkage setup is that it

is much easier for a user to move the end effector compared to the rack and pinion

mechanism. This comparison demonstrates the tradeoff between the torque required

from the motors to move the system and the force required from a user to move

the system. For this reason, the five-bar linkage mechanism appears to be better for

recording user inputs, while the rack and pinion mechanism is better for reproducing

trajectories.

There is also a difference in scalability between the two mechanisms. If a larger

version of the five-bar linkage mechanism were constructed, the inherent error would

be amplified by a constant factor proportional to the change in size. This is because

the angle of the arms is being controlled, so any error in the angle is amplified along

the length of the arms. The inherent error in the rack and pinion mechanism, on the

other hand, does not scale with the size of the mechanism. The error in the rack and

pinion only depends on how precisely the lengths of the arms can be controlled, not

on the overall size of the mechanism. In fact, a larger mechanism could be even more

accurate because if the arms are longer, there is a larger region in which the arms are

at nearly a right angle to one another (i.e. γ ≈ 90◦).

5.2 Controls

From an analysis of the linear models of the two plants in sections 2.4 and 3.4,

a significant difference is immediately clear. The five-bar linkage, with its greater

mass, has a pole at 1.3× 10−4 rad/s. The rack and pinion mechanism, on the other

hand, has the same pole at -204 rad/s. The dramatic increase in pole speed provides

more flexibility in placing a controller zero, allowing for a much greater bandwidth.

This results in higher rise times and better tracking. By selecting different gains for

the rack and pinion mechanism, a wider variety of behaviors can be achieved, ranging

from smooth, gentle control to aggressive, oscillatory, highly accurate control.

5.3 Electronics and Software

Microprocessor-based systems and microcontroller-based systems have inherent trade-

offs. In general, microprocessors have more processing power, more data storage

space, and a higher data transfer rate [6]. Meanwhile, the Arduino microcontroller

51



consumes much less power and due to its lack of an operating system has negligible

overhead [2]. Due to the above criteria with regard to overall accuracy, one would

expect microprocessors to outperform microcontrollers. However, our aim for the

second design was to implement a portable system based on readily available third

party motors, leading to our decision to choose an Arduino.

Despite these limitations and the less accurate encoders, the Arduino system was

able to maintain a high level of accuracy and in general performed better than the

Quanser system. We attribute the success of the system to the mechanical features

of the rack and pinion mechanism. However, in order to be certain, further studies

would be required.
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Chapter 6

Conclusion

During the course of this project, we developed and tested an entirely new mechanism

capable of motion with two degrees of freedom. We tested this mechanism against a

five-bar linkage. By optimizing the proportional and derivative gains for each system,

we were able to accurately record and play back a variety of simple and complex

trajectories.

The five-bar linkage and rack and pinion mechanism have comparable ranges of

motion, but the latter is significantly lighter. Its use of translational instead of ro-

tational motion increases its accuracy, as can be seen in the test results. Unlike

the five-bar linkage, error in the rack and pinion does not scale with the size of the

mechanism.

The differences between these two mechanisms illustrated a key tradeoff. The

five-bar linkage affords the user greater leverage in turning the motors, allowing for

easier recording of user motion at the cost of playback accuracy. In contrast, the

rack and pinion mechanism provides less leverage, making user input more difficult

but providing more accurate control. One simple modification that could be made to

the rack and pinion mechanism to address this tradeoff would be to have two modes

for the mechanism: one for recording and one for playback. The gear motor could

be disengaged during recording so that only the encoder needed to be turned by the

user.

Table 6.1: Microcontroller and Microprocessor Usage

Microprocessor Microcontroller
Five-Bar Linkage Examined Here Future Work
Rack and Pinion Future Work Examined Here
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Future experimenters might consider making a five-bar linkage that is lighter

weight and optimized for its use as an Autopen. Since this project started as a

method of catching projectiles, the five-bar linkage was not fine-tuned for this pur-

pose. In addition, using the same controller for both systems would produce more

useful results. Arduinos are inexpensive, and controlling the five-bar linkage using

Arduino would have been no more complex than it was with Quanser. It is unclear

which differences in output are due to the physical setup and which are due to the

chosen controller. Table 6.1 shows the scope of our testing and opportunities for

future experimentation. One might also compare the rack and pinion mechanism to

other two degree of freedom systems, such as the track-based mechanisms found in

laser cutters.

Overall, the rack and pinion mechanism is simple, portable, and accurate. Our

prototype lays the groundwork for future testing and application of this two degree

of freedom mechanism.
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Appendix A

Project Budget and List of

Materials

This table illustrates the funding for the project and the amount remaining. We spent

a minimal amount on Phase One leaving as much a possible for Phase Two.

Figure A.1: Project Budget Summary
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Figure A.2: List of Materials
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Appendix B

Quanser Simulink Models

B.1 Record.mdl

The recording model has three nested models, starting at the XY level, then the θ1θ2,

then finally the physical encoder reading level.

Figure B.1: Quanser Recording Simulink Model: Cartesian Coordinates

Figure B.2: Quanser Recording Simulink Submodel: Angular Coordinates
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Figure B.3: Quanser Recording Simulink Submodel: Encoder Capture

B.2 Playback.mdl

Figure B.4: Quanser Playback Simulink Model: Cartesian Coordinates
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Figure B.5: Quanser Playback Simulink Model: Angular Coordinates

Figure B.6: Quanser Playback Simulink Model: Voltage Output and Encoder Capture

61



Appendix C

Matlab Library

This project used a lot of MATLAB infrastructure, short programs that generated

trajectories, converted between coordinate systems, or plotted various quantities.

C.1 Trajectories

C.1.1 circlegen.m

Creates a csv file with x-y pairs in a circle.

numpoints = 200;

r = 2;

dtheta = 2*pi/numpoints;

theta = 0:dtheta:2*pi;

x = 1 - cos(theta);

y = sin(theta);

x = r.*(x’);

y = r.*(y’);

csvwrite(’circle.csv’,[x y]);

C.1.2 squaregen.m

Creates a csv file with x-y pairs in a square.
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numPoints = 4;

len = 1;

dx = len/numPoints;

side1x = 0:len/numPoints:len-dx;

side1y = zeros(size(side1x));

side2x = len*ones(size(side1x));

side2y = side1x;

side3x = len - side1x;

side3y = len - side1y;

side4x = len - side2x;

side4y = len - side2y;

x = [side1x side2x side3x side4x]’;

y = [side1y side2y side3y side4y]’;

csvwrite(’square.csv’,[x y]);

C.2 Conversions

C.2.1 Theta2XY.m

Converts a θ1, θ2 pair to X,Y for the Quanser system.

function [x,y] = Theta2XY(theta1,theta2)

L = 18;

a = zeros(1,2);

b = zeros(1,2);

c = zeros(1,2);

rCslashA = zeros(1,2);

rCsAnorm = 0;
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m1 = [-L L];

m2 = [L,L];

a = m1 + L.*[sin(theta1) -cos(theta1)];

c = m2 + L.*[-cos(theta2) -sin(theta2)];

rCslashA = c - a;

rCsAnorm = sqrt(rCslashA(1).*rCslashA(1) + rCslashA(2).*rCslashA(2))./2;

rPerp = [rCslashA(2) -rCslashA(1)];

rPerp = rPerp./sqrt((rCslashA(2)*rCslashA(2) + rCslashA(1)*rCslashA(1)));

b = a + rCslashA./2 + sqrt(L*L - rCsAnorm^2).*rPerp;

x = b(1);

y = b(2);

end

C.2.2 XY2Theta.m

Converts an X,Y pair to θ1, θ2 for the Quanser system.

function [theta1,theta2] = XY2Theta(x,y)

L = 18;

X = [x y];

m1 = zeros(1,2);

m2 = zeros(1,2);

r1 = 0;

r2 = 0;

64



phi1 = 0;

phi2 = 0;

beta1 = 0;

beta2 = 0;

m1 = [-L L];

m2 = [L,L];

r1v = X-m1;

r2v = X-m2;

r1 = sqrt(r1v(1).*r1v(1) + r1v(2).*r1v(2));

r2 = sqrt(r2v(1).*r2v(1) + r2v(2).*r2v(2));

phi1 = asin(r1/(2*L)); phi1 = phi1*2;

phi2 = 2*asin(r2./(2*L));

beta1 = asin((x - m1(1))/r1);

beta2 = asin((y - m2(2))/r2);

theta1 = (beta1 - pi/2 + phi1/2);

theta2 = (-beta2 - pi/2 + phi2/2);

end

C.2.3 AlphaFromTheta

Calculates the values of the interior angles based on the outer angles.

function [alpha1 alpha2] = AlphaFromTheta(theta1, theta2)

[x y] = Theta2XY(theta1,theta2);

L = 18;
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m1 = [-L L];

m2 = [L,L];

alpha1 = asin(x/L - m1(1)/L - sin(theta1));

alpha2 = asin(-y/L + m2(2)/L - sin(theta2));

end

C.2.4 XY2Counts.m

Converts an X,Y pair to encoder counts in the Arduino system.

function [count1, count2] = XY2Counts(x, y)

L = 24;

r0 = 16;

m1x = -sqrt(2)*r0/2;

m1y = -sqrt(2)*r0/2;

m2x = sqrt(2)*r0/2;

m2y = -sqrt(2)*r0/2;

D = 1.5;

TicksPerRev = 477; %Found experimentally

H = sqrt((m1x - m2x)^2 + (m1y - m2y)^2);

dx1 = m1x - x;

dx2 = m2x - x;

dy1 = m1y - y;

dy2 = m2y - y;

r1 = sqrt(dx1*dx1 + dy1*dy1);

r2 = sqrt(dx2*dx2 + dy2*dy2);

theta1 = (2/D)*(r1 - r0);
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theta2 = (2/D)*(r2 - r0);

count1 = -theta2*TicksPerRev/(2*pi);

count2 = theta1*TicksPerRev/(2*pi);

end

C.2.5 Counts2XY.m

Converts Arduino encoder counts to XY coordinates.

function [x y] = counts2XY(counts1, counts2)

L = 24;

r0 = 16;

m1x = -sqrt(2)*r0/2;

m1y = -sqrt(2)*r0/2;

m2x = sqrt(2)*r0/2;

m2y = -sqrt(2)*r0/2;

D = 1.5;

TicksPerRev = 477; %Found experimentally

H = sqrt((m1x - m2x)^2 + (m1y - m2y)^2);

theta1 = counts2*2*pi/TicksPerRev;

theta2 = -counts1*2*pi/TicksPerRev;

r1 = r0 + D*theta1/2;

r2 = r0 + D*theta2/2;

h = asin((m2y - m1y)/H);

alpha = acos((r2^2 - r1^2 - H^2)/(-2*r1*H));
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y = r1*sin(alpha - h) + m1y;

x = r1*cos(alpha - h) + m1x;

end

C.2.6 fileParser.m

Takes in a CSV file of encoder data from the arduino and imports it as XY pairs for

plotting.

function [x y] = fileParser(filename)

data = csvread(filename);

len = size(data,1);

x = zeros(len,1);

y = zeros(len,1);

for i = 1:len

[x(i) y(i)] = counts2XY(data(i,1),data(i,2));

end

end

C.2.7 fileconvert.m

Converts a CSV file of XY data to encoder counts.

function fileconvert(filename,newname)

xy = csvread(filename);
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counts = zeros(size(xy));

len = size(xy,1);

for i = 1:len

[temp1, temp2] = XY2Counts(xy(i,1),xy(i,2));

counts(i,:) = [round(temp1) round(temp2)];

end

csvwrite(newname,counts);

end

C.3 J Functions

C.3.1 JFunction.m

For a given θ1 − θ2 pair, computes the effective moment of inertia about one of the

motors.

function [J1, J2] = JFunction(theta1,theta2)

[alpha1, alpha2] = AlphaFromTheta(theta1,theta2);

lbm = 0.4535;

in = 0.0254;

I = 44.5250*lbm*in*in;

m = 1.0623*lbm;

L = 18*in;

J1 = I.*(1 + (sin(alpha1 - theta1).^2 + cos(alpha2 - theta1).^2)...

/(cos(alpha1 - alpha2)^2)) + (m*L^2/8).*(10 + 2.*(sin(alpha1 - theta1).^2...

+ cos(alpha2 - theta1).^2)./(cos(alpha1-alpha2).^2)...

- 8.*(cos(alpha1 - theta1).*cos(alpha2 - theta1))./cos(alpha1 - alpha2));
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J2 = I.*(1 + (sin(alpha2 - theta2).^2 + cos(alpha1 - theta2).^2)...

/(cos(alpha1 - alpha2)^2)) + (m*L^2/8).*(10 + 2.*(sin(alpha1 - theta1).^2...

+ cos(alpha2 - theta1).^2)./(cos(alpha1-alpha2).^2)...

- 8.*(cos(alpha1 - theta1).*cos(alpha2 - theta1))./cos(alpha1 - alpha2));

end

C.3.2 rackJfunc.m

For a given r1, r2 pair and motor distance h, determines the effective moment of

inertia on the motor.

function J = rackJfunc(r1,r2,h)

lbm = 0.4535;

in = 0.0254;

I_turntable = 3.087e-3;

I_arm = 28.15*lbm*in*in;

m_arm = 0.240;

%I’m neglecting the penholder and stuff because it’s tiny

l = (r2-12)*in;

r_gear = 0.75*in;

alpha = acos((h^2 - r1^2 - r2^2)/(-2*r1*r2));

J = m_arm*r_gear*r_gear + (r_gear/(sin(alpha)*r2))*(I_turntable...

+ I_arm + m_arm*l*l);

end
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Appendix D

Arduino and Serial Code

D.1 Arduino Code

/*

* Encoder_Control_Two_Motors

* --------------

* Author: Joshua A. Zimmer

* Version: 1.0

* Date: 26 April 2015

*

* Significant Adaptations From:

* * http://forum.arduino.cc/index.php?topic=8652.0

* * Lab Handouts -- MAE 433B Instructor Versions --

* Professor Clarence Rowley, Princeton University

* * Pololu Dual MC33926 Motor Driver Shield User’s Guide

*

* This program draws etch-a-sketch style figures from a set of

* CSV input data points corresponding to the rotations of

* two motors, making use of PD control to ensure output accuracy.

* After the final data point is sent, the motors return their

* rotations to 0 to ensure that future tests start from the
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* appropriate orientation.

*

* On startup, this program zeros the rotations of the two

* connected motor encoders, and prepares to accept data from the

* serial port. The program recieves a two column CSV file encoded

* as ASCII data over the serial port, which is preceded by the

* initialization string "0000" and succeeded by the finalizing

* string "FFFF". The initialization string indicates the start of

* the CSV data and the finalizing string indicates the end of the

* CSV data. After receiving "FFFF", the system will reset the two

* motors’ rotations to 0.

*

* If the CSV file sends more data than the Arduino’s memory

* can store, the Arduino will cease to interpret data, draw the

* currently stored data points, and then resume intaking data.

*

* (Please note that the following code only pertains to discussed

* analysis and does not allow for direct position recording.)

*

*

* IMPORTANT NOTE: Due to the wiring of the system, Motors 1 & 2 in

* the following code represent the opposite motors as are reflected

* in the text.

*

*/

#include "DualMC33926MotorShield.h"

DualMC33926MotorShield md;
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static String inputString = ""; // a string to store incoming data

#define TIMEENTRIES 350 // maximum entries to be stored at once

#define TIMESCALEIN 30 // millisecionds available for settling per entry

#define TIMESCALEOUT 10 // milliseconds between data recording per entry

#define LOOPTIME 10 // milliseconds between PD update loops

#define TOL 15 // count tolerance for re-zeroing PD update loop

//CONTROL VALUES

#define Kp 28.0 // proportional control constant (found experimentally)

#define Kd 12.0 // derivative control constant (found experimentally)

unsigned long lastMilli = 0; // maintains time of last PD update

unsigned long lastMilliPrint = 0; // maintains time of last data output

unsigned long lastMilliIn = 0; // maintains time of last CSV point rotation

/*

* Shield Pin Reference:

* ----------------------

* I(Motor 1) = A0 (M1FB)

* I(Motor 2) = A1 (M2FB)

* BrakeOff = D4 (nD2)

* DIR(Motor 1) = D7 (M1DIR)

* DIR(Motor 2) = D8 (M2DIR)

* SPD(Motor 1) = D9 (M2PWM)

* SPD(Motor 2) = D10 (M2PWM)

*/

int encodPinA1 = 2;

int encodPinB1 = 11;
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int encodPinA2 = 3;

int encodPinB2 = 12;

// default reference rotation for Motor 1 to attain (misleading name)

int defSpd1 = 0;

// speed acutually sent to Motor 1 to attain defSpd1

int sntSpd1 = 0;

// the current rotation position of Motor 1

volatile long count1 = 0;

// default reference rotation for Motor 2 to attain (misleading name)

int defSpd2 = 0;

// speed acutually sent to Motor 2 to attain defSpd1

int sntSpd2 = 0;

// the current rotation position of Motor 2

volatile long count2 = 0;

/* ---------------------------- FUNCTIONS --------------------------- */

/* Initialize input/output pins, attatch falling-edge interrupts to

* the encoders in order maintain motor rotation counts, initialize

* motor variables and speeds to 0, and reserve memory for the input

* string.*/

void setup()

{

analogReference(DEFAULT); // Should be 5 Volts -- USE EXTERNAL OTHERWISE
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Serial.begin(115200); // Initialize serial communication to shield default

// Setup Encoders for Motor 1 and turn on pullup resistors

pinMode(encodPinA1, INPUT);

pinMode(encodPinB1, INPUT);

digitalWrite(encodPinA1, HIGH);

digitalWrite(encodPinB1, HIGH);

// Setup Encoders for Motor 2 and turn on pullup resistors

pinMode(encodPinA2, INPUT);

pinMode(encodPinB2, INPUT);

digitalWrite(encodPinA2, HIGH);

digitalWrite(encodPinB2, HIGH);

// Attach Interrupts for HE sensor encodor A for Motors 1 and 2

attachInterrupt(0, rencoder1, FALLING); // Interrupt on DP 2 -- Motor 1

attachInterrupt(1, rencoder2, FALLING); // Interrupt on DP 3 -- Motor 2

// Initialize Motors

md.init();

md.setM1Speed(0); // Set initial speed on M1 to zero

md.setM2Speed(0); // Set initial speed on M2 to zero

inputString.reserve(200); // reserve 200 bytes for the inputString:

delay(1000); // Allow for debugging prep/Serial Monitor

}

/* Maintains a DFA state variable that causes thes system to correspndingly:
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* 1. Take in and record CSV data OR

* 2. Update PD Control, Output Recorded Data, and Set Motor Speeds

*/

void loop()

{

static boolean stringComplete = false; // maintains if line is complete

static int state = 0; // DFA State

static int i = 0; // iteration var -- current number of CSV input lines

static int j = 0; // iteration var -- motor # of next input count

static int l = 0; // iteration var -- line # of current input tracked

static int xy[TIMEENTRIES][2]; // array of counts for input motors (x-1, y-2)

static boolean done = true; // maintains whether or not "FFFF" recieved

// Determines whether or not we should be waiting for the "0000" string

if(state == 0)

{

if(done)

state = waitForStart(state);

else

state ++;

done = false;

}

// Intakes and parses the CSV file from the serial port

else if(state == 1)

{

while (Serial.available()) {
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// get the new byte:

char inChar = (char)Serial.read();

// add it to the inputString:

inputString += inChar;

// if the input string is "FFFF", we have reached

// file end:

if (inputString.substring(inputString.length()-5,

inputString.length()) == "FFFF\n")

{

stringComplete = true;

done = true;

state ++;

j = 0;

}

// if the incoming character is a newline, set a flag

// so the main loop can do something about it, inc i,

// set j = 0:

else if (inChar == ’\n’)

{

xy[i][j] = inputString.toInt();

stringComplete = true;

i++;

j = 0;
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}

// if the incoming character is a ’,’, inc j:

else if (inChar == ’,’)

{

xy[i][j] = inputString.toInt();

inputString = "";

j++;

}

// deal with the newline flag:

if(stringComplete == true)

{

//Serial.print(inputString);

inputString = "";

stringComplete = false;

}

// if the input data exceeds Arduino memory,

// write out all of the data that has been

// brought in, thus far:

if(i + 1 >= TIMEENTRIES)

{

state ++;

j = 0;

inputString = "";

break;

}
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}

}

// Dummy state for debugging

else if(state == 1)

{

state++;

l = 0;

}

// PD update loop

else if(state == 2)

{

// if time-out has elapsed, output position data

if(millis() - lastMilliPrint >= TIMESCALEOUT && l > 1 && l <= i+1)

{

lastMilliPrint = millis();

//send data to file

pXY(count1,count2);

}

// if time-in has elapsed, progress to next CSV position

if(millis() - lastMilliIn >= TIMESCALEIN)

{

lastMilliIn = millis();

if(l >= i)

{

if(done)

79



{

defSpd1 = 0;

defSpd2 = 0;

}

if(l > i+1)

{

state ++;

}

}

else

{

defSpd1 = xy[l][0]; //x

defSpd2 = xy[l][1]; //y

}

l++;

delay(1);

}

// if loop-time has elapsed, update PD outputs for M1/M2

if(millis()-lastMilli >= LOOPTIME)

{

lastMilli = millis();

sntSpd1 = updatePid1(sntSpd1, defSpd1, count1);

md.setM1Speed(sntSpd1);

sntSpd2 = updatePid2(sntSpd2, defSpd2, count2);

md.setM2Speed(sntSpd2);

}

}
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// additional PD settling time to allow for continued input

else if(state == 3)

{

if(millis()-lastMilli >= LOOPTIME)

{

lastMilli = millis();

sntSpd1 = updatePid1(sntSpd1, defSpd1, count1);

md.setM1Speed(sntSpd1);

sntSpd2 = updatePid2(sntSpd2, defSpd2, count2);

md.setM2Speed(sntSpd2);

}

if(abs(count1 - defSpd1) < TOL && abs(count2 - defSpd2) < TOL)

{

md.setM1Speed(0);

md.setM2Speed(0);

state ++;

}

}

// Re-zero and return to initial state

else

{

i = 0;

j = 0;

l = 0;

state = 0;

//set back to 0,0 -- go to state 0

}

}
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// compute desired PWM value for Motor 1 output

int updatePid1(int command, int targetValue, int currentValue)

{

float pidTerm = 0; // PD correction

int error = 0;

error = targetValue - currentValue;

static int last_error = error;

pidTerm = (Kp * error) + (Kd * (error - last_error));

last_error = error;

return constrain(int(pidTerm), -400, 400);

}

// compute desired PWM value for Motor 2 output

int updatePid2(int command, int targetValue, int currentValue)

{

float pidTerm = 0; // PD correction

int error = 0;

error = targetValue - currentValue;

static int last_error = error;

pidTerm = (Kp * error) + (Kd * (error - last_error));

last_error = error;

return constrain(int(pidTerm), -400, 400);

}

// interrupt routine to maintian Motor 1 rotation value

void rencoder1()

{

if(PINB & 0b00001000) count1++; // Pin 11 falling edge
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else count1--;

}

// interrupt routine to maintian Motor 1 rotation value

void rencoder2()

{

if(PINB & 0b00010000) count2++; // Pin 12 falling edge

else count2--;

}

// parameter current state, waits for "0000" to increment input and return

int waitForStart(int cState)

{

while (true) {

if(Serial.available())

{

// get the new byte:

char inChar = (char)Serial.read();

// add it to the inputString:

inputString += inChar;

// if the input string is "0000", commence CSV reading

if (inputString.substring(inputString.length()-5,

inputString.length()) == "0000\n") {

break;

}

}

}

inputString = "";

return cState + 1;
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}

// prints "X, Y" out over the serial port

void pXY(int x, int y)

{

Serial.print(String(x)); Serial.print(", "); Serial.println(String(y));

Serial.flush();

}

D.2 C-Interfacing Code

/*

* spc

* --------------

* Author: Joshua A. Zimmer

* Version: 1.0

* Date: 26 April 2015

*

* Significant Adaptations From:

* * The arduino-serial library

*

* A simple command-line program to send CSV file count data to

* an Arduino board. Works on any POSIX system (Mac/Unix/PC)

*

* Compiles with something like:

* gcc -o spc arduino-serial-lib.c arduino-serial.c

* or use the included Makefile

*

* Mac: make sure you have Xcode installed

* Windows: try MinGW to get GCC
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*

*/

#include <stdio.h> // Standard input/output definitions

#include <stdlib.h>

#include <string.h>

#include <string.h> // String function definitions

#include <unistd.h> // for usleep()

#include <getopt.h>

#include "arduino-serial-lib.h"

void usage(void)

{

printf("Usage: spc -b <bps> -p <serialport> [OPTIONS]\n"

"\n"

"Options:\n"

" -h, --help Print this help message\n"

" -b, --baud=baudrate Baudrate (bps) of Arduino (default 9600)\n"

" -p, --port=serialport Serial port Arduino is connected to\n"

" -q --quiet Don’t print out as much info\n"

"\n");

exit(EXIT_SUCCESS);

}

// Prints out an error message corresponding to string parameter

void error(char * msg)

{

fprintf(stderr, "%s\n",msg);
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exit(EXIT_FAILURE);

}

// Opens the serial port at the specified baudrate

int openPort(const char* serialport, int baudrate, int quiet)

{

int fd = -1;

fd = serialport_init(serialport, baudrate);

if( fd==-1 ) error("couldn’t open port");

if(!quiet) printf("opened port %s\n",serialport);

serialport_flush(fd);

return fd;

}

// Recieves output fron the serial port

int getOutput(int fd, char* buf, const int buf_max, int timeout, int quiet)

{

if( fd == -1 ) error("serial port not opened");

memset(buf,0,buf_max);

serialport_read_until(fd, buf, ’\n’, buf_max, timeout);

if( !quiet ) printf("read string:");

printf("%s", buf);

return 0;

}

// Beginning of file = "0000", End of file = "FFFF", CSV included between

int rwStdIn(int fd, char* buf, const int buf_max, int timeout, int quiet)

{
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int inputSize = 0;

int charLen = 0;

int rc = -1;

if(fd == -1) error("serial port not opened");

// Writes out "0000\n" until successfully recieved by Arduino

while((rc = serialport_write(fd,"0000\n")) < 0)

{

printf("%i\n", rc);

usleep(2); // wait until connection established

}

usleep(20); // wait 20 microseconds

// Continue in the file write loop until no information left to write

while(fgets(buf, buf_max, stdin)) {

charLen += strlen(buf);

// Wait if the data is too much for Arduino to handle

if(inputSize >= 350)

{

usleep(10000000);

charLen = 0;

inputSize = 0;

}

// Wait for a little while if too many characters on serial buffer

else if(charLen >= 64)

{

usleep(300000);
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charLen = 0;

}

// Brief wait between characters

else

{

usleep(30000);

}

if( !quiet ) printf("send string:%s\n", buf);

if((rc = serialport_write(fd, buf)) == -1)

{

error("error writing");

usleep(2);

}

inputSize += 1;

}

// Writes out "FFFF\n" until successfully recieved by Arduino

while((rc = serialport_write(fd,"FFFF\n")) < 0)

{

printf("%i\n", rc);

usleep(2); // wait until confirmed sending

}

return inputSize;

}

int main(int argc, char *argv[])

{
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const int buf_max = 256;

int fd = -1;

char serialport[buf_max];

int baudrate = 115200; // default

char quiet = 0;

int timeout = 2000;

char buf[buf_max];

strcpy(serialport, "/dev/tty.usbmodemfa131"); // default

/* Parse options pt. 1*/

int option_index = 0, opt;

static struct option loptions[] = {

{"help", no_argument, 0, ’h’},

{"port", required_argument, 0, ’p’},

{"baud", required_argument, 0, ’b’},

{"quiet", no_argument, 0, ’q’},

{NULL, 0, 0, 0}

};

// Parse options pt. 2

while(1)

{

opt = getopt_long (argc, argv, "hp:b:s:S:i:rFn:d:qe:t:",

loptions, &option_index);

if (opt==-1) break;

switch (opt)

{
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case ’0’:

break;

case ’q’:

quiet = 1;

break;

case ’h’:

usage();

break;

case ’b’:

baudrate = strtol(optarg,NULL,10);

break;

case ’p’:

if( fd!=-1 ) {

serialport_close(fd);

if(!quiet) printf("closed port %s\n",serialport);

}

strcpy(serialport,optarg);

break;

}

}

int inputSize = 0;

// Open serial port at baud rate

fd = openPort(serialport, baudrate, quiet);

// Send initialization byte to serial port --

// wait for response, open input file, read/write to serial

inputSize = rwStdIn(fd,buf,buf_max,timeout,quiet);
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// Close input file

// Send closing byte to serial port -- wait for response

// Open output file

// Output serial from Arduino to output file

do

{

getOutput(fd,buf,buf_max,timeout,quiet); //REMOVED FOR DEBUG

}while(*buf != 0);

// Close output file

// Close serial port

serialport_close(fd);

exit(EXIT_SUCCESS);

} // end main
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Appendix E

Technical Specifications

E.1 Quanser System Specifications

Figure E.1: Quanser SRV02 Rotary Servo Plant Specifications [15]
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E.2 Arduino Rack and Pinion Mechanism Specifi-

cations

Table E.1: Pololu Dual MC33926 Motor Driver Shield Specifications [9]

Motor driver: MC33926
Motor channels: 2
Minimum operating voltage: 5 V
Maximum operating voltage: 28 V
Current sense: 0.525 V/A
Maximum PWM frequency: 20 kHz
Minimum logic voltage: 2.5 V
Maximum logic voltage: 5.5 V

Table E.2: Pololu 12V, 30:1 Gear Motor w/ Encoder Specifications [1]

Gear ratio: 30:1
Free-run speed @ 12V: 350 rpm
Free-run current @ 12V: 300 mA
Stall current @ 12V: 5000 mA
Stall torque @ 12V: 110 oz-in
Free-run speed @ 6V: 175 rpm
Free-run current @ 6V: 250 mA
Stall current @ 6V: 2500 mA
Stall torque @ 6V: 55 oz-in
Lead length: 11 in
Counts per Revolution: 1920
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Table E.3: Arduino Uno - R3 Specifications [2]

Microcontroller: ATmega328
Operating Voltage 5V
Input Voltage (recommended): 7-12V
Input Voltage (limits): 6-20V
Digital I/O Pins: 14 (of which 6 provide PWM output)
Analog Input Pins: 6
DC Current per I/O Pin: 40 mA
DC Current for 3.3V Pin: 50 mA
Flash Memory: 32 KB (ATmega328) of which 0.5 KB used by bootloader
SRAM: 2 KB (ATmega328)
EEPROM: 1 KB (ATmega328)
Clock Speed: 16 MHz
Length: 68.6 mm
Width: 53.4 mm
Weight: 25 g
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